[2b1e77]: src / code / late-type.lisp Maximize Restore History

Download this file

late-type.lisp    3750 lines (3497 with data), 165.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
;;;; This file contains the definition of non-CLASS types (e.g.
;;;; subtypes of interesting BUILT-IN-CLASSes) and the interfaces to
;;;; the type system. Common Lisp type specifiers are parsed into a
;;;; somewhat canonical internal type representation that supports
;;;; type union, intersection, etc. (Except that ALIEN types have
;;;; moved out..)
;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.
(in-package "SB!KERNEL")
(/show0 "late-type.lisp 19")
(!begin-collecting-cold-init-forms)
;;; ### Remaining incorrectnesses:
;;;
;;; There are all sorts of nasty problems with open bounds on FLOAT
;;; types (and probably FLOAT types in general.)
;;; This condition is signalled whenever we make a UNKNOWN-TYPE so that
;;; compiler warnings can be emitted as appropriate.
(define-condition parse-unknown-type (condition)
((specifier :reader parse-unknown-type-specifier :initarg :specifier)))
;;; These functions are used as method for types which need a complex
;;; subtypep method to handle some superclasses, but cover a subtree
;;; of the type graph (i.e. there is no simple way for any other type
;;; class to be a subtype.) There are always still complex ways,
;;; namely UNION and MEMBER types, so we must give TYPE1's method a
;;; chance to run, instead of immediately returning NIL, T.
(defun delegate-complex-subtypep-arg2 (type1 type2)
(let ((subtypep-arg1
(type-class-complex-subtypep-arg1
(type-class-info type1))))
(if subtypep-arg1
(funcall subtypep-arg1 type1 type2)
(values nil t))))
(defun delegate-complex-intersection2 (type1 type2)
(let ((method (type-class-complex-intersection2 (type-class-info type1))))
(if (and method (not (eq method #'delegate-complex-intersection2)))
(funcall method type2 type1)
(hierarchical-intersection2 type1 type2))))
(defun contains-unknown-type-p (ctype)
(cond ((unknown-type-p ctype) t)
((intersection-type-p ctype)
(some #'contains-unknown-type-p (intersection-type-types ctype)))
((union-type-p ctype)
(some #'contains-unknown-type-p (union-type-types ctype)))
((negation-type-p ctype)
(contains-unknown-type-p (negation-type-type ctype)))))
;;; This is used by !DEFINE-SUPERCLASSES to define the SUBTYPE-ARG1
;;; method. INFO is a list of conses
;;; (SUPERCLASS-CLASS . {GUARD-TYPE-SPECIFIER | NIL}).
(defun !has-superclasses-complex-subtypep-arg1 (type1 type2 info)
;; If TYPE2 might be concealing something related to our class
;; hierarchy
(if (type-might-contain-other-types-p type2)
;; too confusing, gotta punt
(values nil nil)
;; ordinary case expected by old CMU CL code, where the taxonomy
;; of TYPE2's representation accurately reflects the taxonomy of
;; the underlying set
(values
;; FIXME: This old CMU CL code probably deserves a comment
;; explaining to us mere mortals how it works...
(and (sb!xc:typep type2 'classoid)
(dolist (x info nil)
(when (or (not (cdr x))
(csubtypep type1 (specifier-type (cdr x))))
(return
(or (eq type2 (car x))
(let ((inherits (layout-inherits
(classoid-layout (car x)))))
(dotimes (i (length inherits) nil)
(when (eq type2 (layout-classoid (svref inherits i)))
(return t)))))))))
t)))
;;; This function takes a list of specs, each of the form
;;; (SUPERCLASS-NAME &OPTIONAL GUARD).
;;; Consider one spec (with no guard): any instance of the named
;;; TYPE-CLASS is also a subtype of the named superclass and of any of
;;; its superclasses. If there are multiple specs, then some will have
;;; guards. We choose the first spec whose guard is a supertype of
;;; TYPE1 and use its superclass. In effect, a sequence of guards
;;; G0, G1, G2
;;; is actually
;;; G0,(and G1 (not G0)), (and G2 (not (or G0 G1))).
;;;
;;; WHEN controls when the forms are executed.
(defmacro !define-superclasses (type-class-name specs when)
(with-unique-names (type-class info)
`(,when
(let ((,type-class (type-class-or-lose ',type-class-name))
(,info (mapcar (lambda (spec)
(destructuring-bind
(super &optional guard)
spec
(cons (find-classoid super) guard)))
',specs)))
(setf (type-class-complex-subtypep-arg1 ,type-class)
(lambda (type1 type2)
(!has-superclasses-complex-subtypep-arg1 type1 type2 ,info)))
(setf (type-class-complex-subtypep-arg2 ,type-class)
#'delegate-complex-subtypep-arg2)
(setf (type-class-complex-intersection2 ,type-class)
#'delegate-complex-intersection2)))))
;;;; FUNCTION and VALUES types
;;;;
;;;; Pretty much all of the general type operations are illegal on
;;;; VALUES types, since we can't discriminate using them, do
;;;; SUBTYPEP, etc. FUNCTION types are acceptable to the normal type
;;;; operations, but are generally considered to be equivalent to
;;;; FUNCTION. These really aren't true types in any type theoretic
;;;; sense, but we still parse them into CTYPE structures for two
;;;; reasons:
;;;; -- Parsing and unparsing work the same way, and indeed we can't
;;;; tell whether a type is a function or values type without
;;;; parsing it.
;;;; -- Many of the places that can be annotated with real types can
;;;; also be annotated with function or values types.
;;; the description of a &KEY argument
(defstruct (key-info #-sb-xc-host (:pure t)
(:copier nil))
;; the key (not necessarily a keyword in ANSI Common Lisp)
(name (missing-arg) :type symbol)
;; the type of the argument value
(type (missing-arg) :type ctype))
(!define-type-method (values :simple-subtypep :complex-subtypep-arg1)
(type1 type2)
(declare (ignore type2))
;; FIXME: should be TYPE-ERROR, here and in next method
(error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type1)))
(!define-type-method (values :complex-subtypep-arg2)
(type1 type2)
(declare (ignore type1))
(error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type2)))
(!define-type-method (values :negate) (type)
(error "NOT VALUES too confusing on ~S" (type-specifier type)))
(!define-type-method (values :unparse) (type)
(cons 'values
(let ((unparsed (unparse-args-types type)))
(if (or (values-type-optional type)
(values-type-rest type)
(values-type-allowp type))
unparsed
(nconc unparsed '(&optional))))))
;;; Return true if LIST1 and LIST2 have the same elements in the same
;;; positions according to TYPE=. We return NIL, NIL if there is an
;;; uncertain comparison.
(defun type=-list (list1 list2)
(declare (list list1 list2))
(do ((types1 list1 (cdr types1))
(types2 list2 (cdr types2)))
((or (null types1) (null types2))
(if (or types1 types2)
(values nil t)
(values t t)))
(multiple-value-bind (val win)
(type= (first types1) (first types2))
(unless win
(return (values nil nil)))
(unless val
(return (values nil t))))))
(!define-type-method (values :simple-=) (type1 type2)
(type=-args type1 type2))
(!define-type-class function)
;;; a flag that we can bind to cause complex function types to be
;;; unparsed as FUNCTION. This is useful when we want a type that we
;;; can pass to TYPEP.
(defvar *unparse-fun-type-simplify*)
;;; A flag to prevent TYPE-OF calls by user applications from returning
;;; (NOT x). TYPE-SPECIFIER usually allows it to preserve information.
(defvar *unparse-allow-negation*)
(!cold-init-forms (setq *unparse-fun-type-simplify* nil
*unparse-allow-negation* t))
(!define-type-method (function :negate) (type)
(make-negation-type :type type))
(!define-type-method (function :unparse) (type)
(if *unparse-fun-type-simplify*
'function
(list 'function
(if (fun-type-wild-args type)
'*
(unparse-args-types type))
(type-specifier
(fun-type-returns type)))))
;;; The meaning of this is a little confused. On the one hand, all
;;; function objects are represented the same way regardless of the
;;; arglists and return values, and apps don't get to ask things like
;;; (TYPEP #'FOO (FUNCTION (FIXNUM) *)) in any meaningful way. On the
;;; other hand, Python wants to reason about function types. So...
(!define-type-method (function :simple-subtypep) (type1 type2)
(flet ((fun-type-simple-p (type)
(not (or (fun-type-rest type)
(fun-type-keyp type))))
(every-csubtypep (types1 types2)
(loop
for a1 in types1
for a2 in types2
do (multiple-value-bind (res sure-p)
(csubtypep a1 a2)
(unless res (return (values res sure-p))))
finally (return (values t t)))))
(and/type (values-subtypep (fun-type-returns type1)
(fun-type-returns type2))
(cond ((fun-type-wild-args type2) (values t t))
((fun-type-wild-args type1)
(cond ((fun-type-keyp type2) (values nil nil))
((not (fun-type-rest type2)) (values nil t))
((not (null (fun-type-required type2)))
(values nil t))
(t (and/type (type= *universal-type*
(fun-type-rest type2))
(every/type #'type=
*universal-type*
(fun-type-optional
type2))))))
((not (and (fun-type-simple-p type1)
(fun-type-simple-p type2)))
(values nil nil))
(t (multiple-value-bind (min1 max1) (fun-type-nargs type1)
(multiple-value-bind (min2 max2) (fun-type-nargs type2)
(cond ((or (> max1 max2) (< min1 min2))
(values nil t))
((and (= min1 min2) (= max1 max2))
(and/type (every-csubtypep
(fun-type-required type1)
(fun-type-required type2))
(every-csubtypep
(fun-type-optional type1)
(fun-type-optional type2))))
(t (every-csubtypep
(concatenate 'list
(fun-type-required type1)
(fun-type-optional type1))
(concatenate 'list
(fun-type-required type2)
(fun-type-optional type2))))))))))))
(!define-superclasses function ((function)) !cold-init-forms)
;;; The union or intersection of two FUNCTION types is FUNCTION.
(!define-type-method (function :simple-union2) (type1 type2)
(declare (ignore type1 type2))
(specifier-type 'function))
(!define-type-method (function :simple-intersection2) (type1 type2)
(let ((ftype (specifier-type 'function)))
(cond ((eq type1 ftype) type2)
((eq type2 ftype) type1)
(t (let ((rtype (values-type-intersection (fun-type-returns type1)
(fun-type-returns type2))))
(flet ((change-returns (ftype rtype)
(declare (type fun-type ftype) (type ctype rtype))
(make-fun-type :required (fun-type-required ftype)
:optional (fun-type-optional ftype)
:keyp (fun-type-keyp ftype)
:keywords (fun-type-keywords ftype)
:allowp (fun-type-allowp ftype)
:returns rtype)))
(cond
((fun-type-wild-args type1)
(if (fun-type-wild-args type2)
(make-fun-type :wild-args t
:returns rtype)
(change-returns type2 rtype)))
((fun-type-wild-args type2)
(change-returns type1 rtype))
(t (multiple-value-bind (req opt rest)
(args-type-op type1 type2 #'type-intersection #'max)
(make-fun-type :required req
:optional opt
:rest rest
;; FIXME: :keys
:allowp (and (fun-type-allowp type1)
(fun-type-allowp type2))
:returns rtype))))))))))
;;; The union or intersection of a subclass of FUNCTION with a
;;; FUNCTION type is somewhat complicated.
(!define-type-method (function :complex-intersection2) (type1 type2)
(cond
((type= type1 (specifier-type 'function)) type2)
((csubtypep type1 (specifier-type 'function)) nil)
(t :call-other-method)))
(!define-type-method (function :complex-union2) (type1 type2)
(declare (ignore type2))
;; TYPE2 is a FUNCTION type. If TYPE1 is a classoid type naming
;; FUNCTION, then it is the union of the two; otherwise, there is no
;; special union.
(cond
((type= type1 (specifier-type 'function)) type1)
(t nil)))
(!define-type-method (function :simple-=) (type1 type2)
(macrolet ((compare (comparator field)
(let ((reader (symbolicate '#:fun-type- field)))
`(,comparator (,reader type1) (,reader type2)))))
(and/type (compare type= returns)
(cond ((neq (fun-type-wild-args type1) (fun-type-wild-args type2))
(values nil t))
((eq (fun-type-wild-args type1) t)
(values t t))
(t (type=-args type1 type2))))))
(!define-type-class constant :inherits values)
(!define-type-method (constant :negate) (type)
(error "NOT CONSTANT too confusing on ~S" (type-specifier type)))
(!define-type-method (constant :unparse) (type)
`(constant-arg ,(type-specifier (constant-type-type type))))
(!define-type-method (constant :simple-=) (type1 type2)
(type= (constant-type-type type1) (constant-type-type type2)))
(!def-type-translator constant-arg (type)
(make-constant-type :type (single-value-specifier-type type)))
;;; Return the lambda-list-like type specification corresponding
;;; to an ARGS-TYPE.
(declaim (ftype (function (args-type) list) unparse-args-types))
(defun unparse-args-types (type)
(collect ((result))
(dolist (arg (args-type-required type))
(result (type-specifier arg)))
(when (args-type-optional type)
(result '&optional)
(dolist (arg (args-type-optional type))
(result (type-specifier arg))))
(when (args-type-rest type)
(result '&rest)
(result (type-specifier (args-type-rest type))))
(when (args-type-keyp type)
(result '&key)
(dolist (key (args-type-keywords type))
(result (list (key-info-name key)
(type-specifier (key-info-type key))))))
(when (args-type-allowp type)
(result '&allow-other-keys))
(result)))
(!def-type-translator function (&optional (args '*) (result '*))
(let ((result (coerce-to-values (values-specifier-type result))))
(if (eq args '*)
(if (eq result *wild-type*)
(specifier-type 'function)
(make-fun-type :wild-args t :returns result))
(multiple-value-bind (required optional rest keyp keywords allowp)
(parse-args-types args)
(if (and (null required)
(null optional)
(eq rest *universal-type*)
(not keyp))
(if (eq result *wild-type*)
(specifier-type 'function)
(make-fun-type :wild-args t :returns result))
(make-fun-type :required required
:optional optional
:rest rest
:keyp keyp
:keywords keywords
:allowp allowp
:returns result))))))
(!def-type-translator values (&rest values)
(if (eq values '*)
*wild-type*
(multiple-value-bind (required optional rest keyp keywords allowp llk-p)
(parse-args-types values)
(declare (ignore keywords))
(cond (keyp
(error "&KEY appeared in a VALUES type specifier ~S."
`(values ,@values)))
(llk-p
(make-values-type :required required
:optional optional
:rest rest
:allowp allowp))
(t
(make-short-values-type required))))))
;;;; VALUES types interfaces
;;;;
;;;; We provide a few special operations that can be meaningfully used
;;;; on VALUES types (as well as on any other type).
;;; Return the minimum number of values possibly matching VALUES type
;;; TYPE.
(defun values-type-min-value-count (type)
(etypecase type
(named-type
(ecase (named-type-name type)
((t *) 0)
((nil) 0)))
(values-type
(length (values-type-required type)))))
;;; Return the maximum number of values possibly matching VALUES type
;;; TYPE.
(defun values-type-max-value-count (type)
(etypecase type
(named-type
(ecase (named-type-name type)
((t *) call-arguments-limit)
((nil) 0)))
(values-type
(if (values-type-rest type)
call-arguments-limit
(+ (length (values-type-optional type))
(length (values-type-required type)))))))
(defun values-type-may-be-single-value-p (type)
(<= (values-type-min-value-count type)
1
(values-type-max-value-count type)))
;;; VALUES type with a single value.
(defun type-single-value-p (type)
(and (%values-type-p type)
(not (values-type-rest type))
(null (values-type-optional type))
(singleton-p (values-type-required type))))
;;; Return the type of the first value indicated by TYPE. This is used
;;; by people who don't want to have to deal with VALUES types.
#!-sb-fluid (declaim (freeze-type values-type))
; (inline single-value-type))
(defun single-value-type (type)
(declare (type ctype type))
(cond ((eq type *wild-type*)
*universal-type*)
((eq type *empty-type*)
*empty-type*)
((not (values-type-p type))
type)
((car (args-type-required type)))
(t (type-union (specifier-type 'null)
(or (car (args-type-optional type))
(args-type-rest type)
(specifier-type 'null))))))
;;; Return the minimum number of arguments that a function can be
;;; called with, and the maximum number or NIL. If not a function
;;; type, return NIL, NIL.
(defun fun-type-nargs (type)
(declare (type ctype type))
(if (and (fun-type-p type) (not (fun-type-wild-args type)))
(let ((fixed (length (args-type-required type))))
(if (or (args-type-rest type)
(args-type-keyp type)
(args-type-allowp type))
(values fixed nil)
(values fixed (+ fixed (length (args-type-optional type))))))
(values nil nil)))
;;; Determine whether TYPE corresponds to a definite number of values.
;;; The first value is a list of the types for each value, and the
;;; second value is the number of values. If the number of values is
;;; not fixed, then return NIL and :UNKNOWN.
(defun values-types (type)
(declare (type ctype type))
(cond ((or (eq type *wild-type*) (eq type *empty-type*))
(values nil :unknown))
((or (args-type-optional type)
(args-type-rest type))
(values nil :unknown))
(t
(let ((req (args-type-required type)))
(values req (length req))))))
;;; Return two values:
;;; 1. A list of all the positional (fixed and optional) types.
;;; 2. The &REST type (if any). If no &REST, then the DEFAULT-TYPE.
(defun values-type-types (type &optional (default-type *empty-type*))
(declare (type ctype type))
(if (eq type *wild-type*)
(values nil *universal-type*)
(values (append (args-type-required type)
(args-type-optional type))
(cond ((args-type-rest type))
(t default-type)))))
;;; types of values in (the <type> (values o_1 ... o_n))
(defun values-type-out (type count)
(declare (type ctype type) (type unsigned-byte count))
(if (eq type *wild-type*)
(make-list count :initial-element *universal-type*)
(collect ((res))
(flet ((process-types (types)
(loop for type in types
while (plusp count)
do (decf count)
do (res type))))
(process-types (values-type-required type))
(process-types (values-type-optional type))
(when (plusp count)
(loop with rest = (the ctype (values-type-rest type))
repeat count
do (res rest))))
(res))))
;;; types of variable in (m-v-bind (v_1 ... v_n) (the <type> ...
(defun values-type-in (type count)
(declare (type ctype type) (type unsigned-byte count))
(if (eq type *wild-type*)
(make-list count :initial-element *universal-type*)
(collect ((res))
(let ((null-type (specifier-type 'null)))
(loop for type in (values-type-required type)
while (plusp count)
do (decf count)
do (res type))
(loop for type in (values-type-optional type)
while (plusp count)
do (decf count)
do (res (type-union type null-type)))
(when (plusp count)
(loop with rest = (acond ((values-type-rest type)
(type-union it null-type))
(t null-type))
repeat count
do (res rest))))
(res))))
;;; Return a list of OPERATION applied to the types in TYPES1 and
;;; TYPES2, padding with REST2 as needed. TYPES1 must not be shorter
;;; than TYPES2. The second value is T if OPERATION always returned a
;;; true second value.
(defun fixed-values-op (types1 types2 rest2 operation)
(declare (list types1 types2) (type ctype rest2) (type function operation))
(let ((exact t))
(values (mapcar (lambda (t1 t2)
(multiple-value-bind (res win)
(funcall operation t1 t2)
(unless win
(setq exact nil))
res))
types1
(append types2
(make-list (- (length types1) (length types2))
:initial-element rest2)))
exact)))
;;; If TYPE isn't a values type, then make it into one.
(defun-cached (%coerce-to-values
:hash-bits 8
:hash-function (lambda (type)
(logand (type-hash-value type)
#xff)))
((type eq))
(cond ((multiple-value-bind (res sure)
(csubtypep (specifier-type 'null) type)
(and (not res) sure))
;; FIXME: What should we do with (NOT SURE)?
(make-values-type :required (list type) :rest *universal-type*))
(t
(make-values-type :optional (list type) :rest *universal-type*))))
(defun coerce-to-values (type)
(declare (type ctype type))
(cond ((or (eq type *universal-type*)
(eq type *wild-type*))
*wild-type*)
((values-type-p type)
type)
(t (%coerce-to-values type))))
;;; Return type, corresponding to ANSI short form of VALUES type
;;; specifier.
(defun make-short-values-type (types)
(declare (list types))
(let ((last-required (position-if
(lambda (type)
(not/type (csubtypep (specifier-type 'null) type)))
types
:from-end t)))
(if last-required
(make-values-type :required (subseq types 0 (1+ last-required))
:optional (subseq types (1+ last-required))
:rest *universal-type*)
(make-values-type :optional types :rest *universal-type*))))
(defun make-single-value-type (type)
(make-values-type :required (list type)))
;;; Do the specified OPERATION on TYPE1 and TYPE2, which may be any
;;; type, including VALUES types. With VALUES types such as:
;;; (VALUES a0 a1)
;;; (VALUES b0 b1)
;;; we compute the more useful result
;;; (VALUES (<operation> a0 b0) (<operation> a1 b1))
;;; rather than the precise result
;;; (<operation> (values a0 a1) (values b0 b1))
;;; This has the virtue of always keeping the VALUES type specifier
;;; outermost, and retains all of the information that is really
;;; useful for static type analysis. We want to know what is always
;;; true of each value independently. It is worthless to know that if
;;; the first value is B0 then the second will be B1.
;;;
;;; If the VALUES count signatures differ, then we produce a result with
;;; the required VALUE count chosen by NREQ when applied to the number
;;; of required values in TYPE1 and TYPE2. Any &KEY values become
;;; &REST T (anyone who uses keyword values deserves to lose.)
;;;
;;; The second value is true if the result is definitely empty or if
;;; OPERATION returned true as its second value each time we called
;;; it. Since we approximate the intersection of VALUES types, the
;;; second value being true doesn't mean the result is exact.
(defun args-type-op (type1 type2 operation nreq)
(declare (type ctype type1 type2)
(type function operation nreq))
(when (eq type1 type2)
(values type1 t))
(multiple-value-bind (types1 rest1)
(values-type-types type1)
(multiple-value-bind (types2 rest2)
(values-type-types type2)
(multiple-value-bind (rest rest-exact)
(funcall operation rest1 rest2)
(multiple-value-bind (res res-exact)
(if (< (length types1) (length types2))
(fixed-values-op types2 types1 rest1 operation)
(fixed-values-op types1 types2 rest2 operation))
(let* ((req (funcall nreq
(length (args-type-required type1))
(length (args-type-required type2))))
(required (subseq res 0 req))
(opt (subseq res req)))
(values required opt rest
(and rest-exact res-exact))))))))
(defun values-type-op (type1 type2 operation nreq)
(multiple-value-bind (required optional rest exactp)
(args-type-op type1 type2 operation nreq)
(values (make-values-type :required required
:optional optional
:rest rest)
exactp)))
(defun compare-key-args (type1 type2)
(let ((keys1 (args-type-keywords type1))
(keys2 (args-type-keywords type2)))
(and (= (length keys1) (length keys2))
(eq (args-type-allowp type1)
(args-type-allowp type2))
(loop for key1 in keys1
for match = (find (key-info-name key1)
keys2 :key #'key-info-name)
always (and match
(type= (key-info-type key1)
(key-info-type match)))))))
(defun type=-args (type1 type2)
(macrolet ((compare (comparator field)
(let ((reader (symbolicate '#:args-type- field)))
`(,comparator (,reader type1) (,reader type2)))))
(and/type
(cond ((null (args-type-rest type1))
(values (null (args-type-rest type2)) t))
((null (args-type-rest type2))
(values nil t))
(t
(compare type= rest)))
(and/type (and/type (compare type=-list required)
(compare type=-list optional))
(if (or (args-type-keyp type1) (args-type-keyp type2))
(values (compare-key-args type1 type2) t)
(values t t))))))
;;; Do a union or intersection operation on types that might be values
;;; types. The result is optimized for utility rather than exactness,
;;; but it is guaranteed that it will be no smaller (more restrictive)
;;; than the precise result.
;;;
;;; The return convention seems to be analogous to
;;; TYPES-EQUAL-OR-INTERSECT. -- WHN 19990910.
(defun-cached (values-type-union :hash-function type-cache-hash
:hash-bits 8
:default nil
:init-wrapper !cold-init-forms)
((type1 eq) (type2 eq))
(declare (type ctype type1 type2))
(cond ((or (eq type1 *wild-type*) (eq type2 *wild-type*)) *wild-type*)
((eq type1 *empty-type*) type2)
((eq type2 *empty-type*) type1)
(t
(values (values-type-op type1 type2 #'type-union #'min)))))
(defun-cached (values-type-intersection :hash-function type-cache-hash
:hash-bits 8
:default (values nil)
:init-wrapper !cold-init-forms)
((type1 eq) (type2 eq))
(declare (type ctype type1 type2))
(cond ((eq type1 *wild-type*)
(coerce-to-values type2))
((or (eq type2 *wild-type*) (eq type2 *universal-type*))
type1)
((or (eq type1 *empty-type*) (eq type2 *empty-type*))
*empty-type*)
((and (not (values-type-p type2))
(values-type-required type1))
(let ((req1 (values-type-required type1)))
(make-values-type :required (cons (type-intersection (first req1) type2)
(rest req1))
:optional (values-type-optional type1)
:rest (values-type-rest type1)
:allowp (values-type-allowp type1))))
(t
(values (values-type-op type1 (coerce-to-values type2)
#'type-intersection
#'max)))))
;;; This is like TYPES-EQUAL-OR-INTERSECT, except that it sort of
;;; works on VALUES types. Note that due to the semantics of
;;; VALUES-TYPE-INTERSECTION, this might return (VALUES T T) when
;;; there isn't really any intersection.
(defun values-types-equal-or-intersect (type1 type2)
(cond ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
(values t t))
((or (eq type1 *wild-type*) (eq type2 *wild-type*))
(values t t))
(t
(let ((res (values-type-intersection type1 type2)))
(values (not (eq res *empty-type*))
t)))))
;;; a SUBTYPEP-like operation that can be used on any types, including
;;; VALUES types
(defun-cached (values-subtypep :hash-function type-cache-hash
:hash-bits 8
:values 2
:default (values nil :empty)
:init-wrapper !cold-init-forms)
((type1 eq) (type2 eq))
(declare (type ctype type1 type2))
(cond ((or (eq type2 *wild-type*) (eq type2 *universal-type*)
(eq type1 *empty-type*))
(values t t))
((eq type1 *wild-type*)
(values (eq type2 *wild-type*) t))
((or (eq type2 *empty-type*)
(not (values-types-equal-or-intersect type1 type2)))
(values nil t))
((and (not (values-type-p type2))
(values-type-required type1))
(csubtypep (first (values-type-required type1))
type2))
(t (setq type2 (coerce-to-values type2))
(multiple-value-bind (types1 rest1) (values-type-types type1)
(multiple-value-bind (types2 rest2) (values-type-types type2)
(cond ((< (length (values-type-required type1))
(length (values-type-required type2)))
(values nil t))
((< (length types1) (length types2))
(values nil nil))
(t
(do ((t1 types1 (rest t1))
(t2 types2 (rest t2)))
((null t2)
(csubtypep rest1 rest2))
(multiple-value-bind (res win-p)
(csubtypep (first t1) (first t2))
(unless win-p
(return (values nil nil)))
(unless res
(return (values nil t))))))))))))
;;;; type method interfaces
;;; like SUBTYPEP, only works on CTYPE structures
(defun-cached (csubtypep :hash-function type-cache-hash
:hash-bits 8
:values 2
:default (values nil :empty)
:init-wrapper !cold-init-forms)
((type1 eq) (type2 eq))
(declare (type ctype type1 type2))
(cond ((or (eq type1 type2)
(eq type1 *empty-type*)
(eq type2 *universal-type*))
(values t t))
#+nil
((eq type1 *universal-type*)
(values nil t))
(t
(!invoke-type-method :simple-subtypep :complex-subtypep-arg2
type1 type2
:complex-arg1 :complex-subtypep-arg1))))
;;; Just parse the type specifiers and call CSUBTYPE.
(defun sb!xc:subtypep (type1 type2 &optional environment)
#!+sb-doc
"Return two values indicating the relationship between type1 and type2.
If values are T and T, type1 definitely is a subtype of type2.
If values are NIL and T, type1 definitely is not a subtype of type2.
If values are NIL and NIL, it couldn't be determined."
(declare (ignore environment))
(csubtypep (specifier-type type1) (specifier-type type2)))
;;; If two types are definitely equivalent, return true. The second
;;; value indicates whether the first value is definitely correct.
;;; This should only fail in the presence of HAIRY types.
(defun-cached (type= :hash-function type-cache-hash
:hash-bits 8
:values 2
:default (values nil :empty)
:init-wrapper !cold-init-forms)
((type1 eq) (type2 eq))
(declare (type ctype type1 type2))
(if (eq type1 type2)
(values t t)
(!invoke-type-method :simple-= :complex-= type1 type2)))
;;; Not exactly the negation of TYPE=, since when the relationship is
;;; uncertain, we still return NIL, NIL. This is useful in cases where
;;; the conservative assumption is =.
(defun type/= (type1 type2)
(declare (type ctype type1 type2))
(multiple-value-bind (res win) (type= type1 type2)
(if win
(values (not res) t)
(values nil nil))))
;;; the type method dispatch case of TYPE-UNION2
(defun %type-union2 (type1 type2)
;; As in %TYPE-INTERSECTION2, it seems to be a good idea to give
;; both argument orders a chance at COMPLEX-INTERSECTION2. Unlike
;; %TYPE-INTERSECTION2, though, I don't have a specific case which
;; demonstrates this is actually necessary. Also unlike
;; %TYPE-INTERSECTION2, there seems to be no need to distinguish
;; between not finding a method and having a method return NIL.
(flet ((1way (x y)
(!invoke-type-method :simple-union2 :complex-union2
x y
:default nil)))
(declare (inline 1way))
(or (1way type1 type2)
(1way type2 type1))))
;;; Find a type which includes both types. Any inexactness is
;;; represented by the fuzzy element types; we return a single value
;;; that is precise to the best of our knowledge. This result is
;;; simplified into the canonical form, thus is not a UNION-TYPE
;;; unless we find no other way to represent the result.
(defun-cached (type-union2 :hash-function type-cache-hash
:hash-bits 8
:init-wrapper !cold-init-forms)
((type1 eq) (type2 eq))
;; KLUDGE: This was generated from TYPE-INTERSECTION2 by Ye Olde Cut And
;; Paste technique of programming. If it stays around (as opposed to
;; e.g. fading away in favor of some CLOS solution) the shared logic
;; should probably become shared code. -- WHN 2001-03-16
(declare (type ctype type1 type2))
(let ((t2 nil))
(cond ((eq type1 type2)
type1)
;; CSUBTYPEP for array-types answers questions about the
;; specialized type, yet for union we want to take the
;; expressed type in account too.
((and (not (and (array-type-p type1) (array-type-p type2)))
(or (setf t2 (csubtypep type1 type2))
(csubtypep type2 type1)))
(if t2 type2 type1))
((or (union-type-p type1)
(union-type-p type2))
;; Unions of UNION-TYPE should have the UNION-TYPE-TYPES
;; values broken out and united separately. The full TYPE-UNION
;; function knows how to do this, so let it handle it.
(type-union type1 type2))
(t
;; the ordinary case: we dispatch to type methods
(%type-union2 type1 type2)))))
;;; the type method dispatch case of TYPE-INTERSECTION2
(defun %type-intersection2 (type1 type2)
;; We want to give both argument orders a chance at
;; COMPLEX-INTERSECTION2. Without that, the old CMU CL type
;; methods could give noncommutative results, e.g.
;; (TYPE-INTERSECTION2 *EMPTY-TYPE* SOME-HAIRY-TYPE)
;; => NIL, NIL
;; (TYPE-INTERSECTION2 SOME-HAIRY-TYPE *EMPTY-TYPE*)
;; => #<NAMED-TYPE NIL>, T
;; We also need to distinguish between the case where we found a
;; type method, and it returned NIL, and the case where we fell
;; through without finding any type method. An example of the first
;; case is the intersection of a HAIRY-TYPE with some ordinary type.
;; An example of the second case is the intersection of two
;; completely-unrelated types, e.g. CONS and NUMBER, or SYMBOL and
;; ARRAY.
;;
;; (Why yes, CLOS probably *would* be nicer..)
(flet ((1way (x y)
(!invoke-type-method :simple-intersection2 :complex-intersection2
x y
:default :call-other-method)))
(declare (inline 1way))
(let ((xy (1way type1 type2)))
(or (and (not (eql xy :call-other-method)) xy)
(let ((yx (1way type2 type1)))
(or (and (not (eql yx :call-other-method)) yx)
(cond ((and (eql xy :call-other-method)
(eql yx :call-other-method))
*empty-type*)
(t
nil))))))))
(defun-cached (type-intersection2 :hash-function type-cache-hash
:hash-bits 8
:values 1
:default nil
:init-wrapper !cold-init-forms)
((type1 eq) (type2 eq))
(declare (type ctype type1 type2))
(cond ((eq type1 type2)
;; FIXME: For some reason, this doesn't catch e.g. type1 =
;; type2 = (SPECIFIER-TYPE
;; 'SOME-UNKNOWN-TYPE). Investigate. - CSR, 2002-04-10
type1)
((or (intersection-type-p type1)
(intersection-type-p type2))
;; Intersections of INTERSECTION-TYPE should have the
;; INTERSECTION-TYPE-TYPES values broken out and intersected
;; separately. The full TYPE-INTERSECTION function knows how
;; to do that, so let it handle it.
(type-intersection type1 type2))
(t
;; the ordinary case: we dispatch to type methods
(%type-intersection2 type1 type2))))
;;; Return as restrictive and simple a type as we can discover that is
;;; no more restrictive than the intersection of TYPE1 and TYPE2. At
;;; worst, we arbitrarily return one of the arguments as the first
;;; value (trying not to return a hairy type).
(defun type-approx-intersection2 (type1 type2)
(cond ((type-intersection2 type1 type2))
((hairy-type-p type1) type2)
(t type1)))
;;; a test useful for checking whether a derived type matches a
;;; declared type
;;;
;;; The first value is true unless the types don't intersect and
;;; aren't equal. The second value is true if the first value is
;;; definitely correct. NIL is considered to intersect with any type.
;;; If T is a subtype of either type, then we also return T, T. This
;;; way we recognize that hairy types might intersect with T.
(defun types-equal-or-intersect (type1 type2)
(declare (type ctype type1 type2))
(if (or (eq type1 *empty-type*) (eq type2 *empty-type*))
(values t t)
(let ((intersection2 (type-intersection2 type1 type2)))
(cond ((not intersection2)
(if (or (csubtypep *universal-type* type1)
(csubtypep *universal-type* type2))
(values t t)
(values t nil)))
((eq intersection2 *empty-type*) (values nil t))
(t (values t t))))))
;;; Return a Common Lisp type specifier corresponding to the TYPE
;;; object.
(defun type-specifier (type)
(declare (type ctype type))
(funcall (type-class-unparse (type-class-info type)) type))
(defun-cached (type-negation :hash-function (lambda (type)
(logand (type-hash-value type)
#xff))
:hash-bits 8
:values 1
:default nil
:init-wrapper !cold-init-forms)
((type eq))
(declare (type ctype type))
(funcall (type-class-negate (type-class-info type)) type))
(defun-cached (type-singleton-p :hash-function (lambda (type)
(logand (type-hash-value type)
#xff))
:hash-bits 8
:values 2
:default (values nil t)
:init-wrapper !cold-init-forms)
((type eq))
(declare (type ctype type))
(let ((function (type-class-singleton-p (type-class-info type))))
(if function
(funcall function type)
(values nil nil))))
;;; (VALUES-SPECIFIER-TYPE and SPECIFIER-TYPE moved from here to
;;; early-type.lisp by WHN ca. 19990201.)
;;; Take a list of type specifiers, computing the translation of each
;;; specifier and defining it as a builtin type.
(declaim (ftype (function (list) (values)) precompute-types))
(defun precompute-types (specs)
(dolist (spec specs)
(let ((res (specifier-type spec)))
(unless (unknown-type-p res)
(setf (info :type :builtin spec) res)
;; KLUDGE: the three copies of this idiom in this file (and
;; the one in class.lisp as at sbcl-0.7.4.1x) should be
;; coalesced, or perhaps the error-detecting code that
;; disallows redefinition of :PRIMITIVE types should be
;; rewritten to use *TYPE-SYSTEM-FINALIZED* (rather than
;; *TYPE-SYSTEM-INITIALIZED*). The effect of this is not to
;; cause redefinition errors when precompute-types is called
;; for a second time while building the target compiler using
;; the cross-compiler. -- CSR, trying to explain why this
;; isn't completely wrong, 2002-06-07
(setf (info :type :kind spec) #+sb-xc-host :defined #-sb-xc-host :primitive))))
(values))
;;;; general TYPE-UNION and TYPE-INTERSECTION operations
;;;;
;;;; These are fully general operations on CTYPEs: they'll always
;;;; return a CTYPE representing the result.
;;; shared logic for unions and intersections: Return a list of
;;; types representing the same types as INPUT-TYPES, but with
;;; COMPOUND-TYPEs satisfying %COMPOUND-TYPE-P broken up into their
;;; component types, and with any SIMPLY2 simplifications applied.
(macrolet
((def (name compound-type-p simplify2)
`(defun ,name (types)
(when types
(multiple-value-bind (first rest)
(if (,compound-type-p (car types))
(values (car (compound-type-types (car types)))
(append (cdr (compound-type-types (car types)))
(cdr types)))
(values (car types) (cdr types)))
(let ((rest (,name rest)) u)
(dolist (r rest (cons first rest))
(when (setq u (,simplify2 first r))
(return (,name (nsubstitute u r rest)))))))))))
(def simplify-intersections intersection-type-p type-intersection2)
(def simplify-unions union-type-p type-union2))
(defun maybe-distribute-one-union (union-type types)
(let* ((intersection (apply #'type-intersection types))
(union (mapcar (lambda (x) (type-intersection x intersection))
(union-type-types union-type))))
(if (notany (lambda (x) (or (hairy-type-p x)
(intersection-type-p x)))
union)
union
nil)))
(defun type-intersection (&rest input-types)
(%type-intersection input-types))
(defun-cached (%type-intersection :hash-bits 8
:hash-function (lambda (x)
(logand (sxhash x) #xff)))
((input-types equal))
(let ((simplified-types (simplify-intersections input-types)))
(declare (type list simplified-types))
;; We want to have a canonical representation of types (or failing
;; that, punt to HAIRY-TYPE). Canonical representation would have
;; intersections inside unions but not vice versa, since you can
;; always achieve that by the distributive rule. But we don't want
;; to just apply the distributive rule, since it would be too easy
;; to end up with unreasonably huge type expressions. So instead
;; we try to generate a simple type by distributing the union; if
;; the type can't be made simple, we punt to HAIRY-TYPE.
(if (and (cdr simplified-types) (some #'union-type-p simplified-types))
(let* ((first-union (find-if #'union-type-p simplified-types))
(other-types (coerce (remove first-union simplified-types)
'list))
(distributed (maybe-distribute-one-union first-union
other-types)))
(if distributed
(apply #'type-union distributed)
(make-hairy-type
:specifier `(and ,@(map 'list
#'type-specifier
simplified-types)))))
(cond
((null simplified-types) *universal-type*)
((null (cdr simplified-types)) (car simplified-types))
(t (%make-intersection-type
(some #'type-enumerable simplified-types)
simplified-types))))))
(defun type-union (&rest input-types)
(%type-union input-types))
(defun-cached (%type-union :hash-bits 8
:hash-function (lambda (x)
(logand (sxhash x) #xff)))
((input-types equal))
(let ((simplified-types (simplify-unions input-types)))
(cond
((null simplified-types) *empty-type*)
((null (cdr simplified-types)) (car simplified-types))
(t (make-union-type
(every #'type-enumerable simplified-types)
simplified-types)))))
;;;; built-in types
(!define-type-class named)
(!cold-init-forms
(macrolet ((frob (name var)
`(progn
(setq ,var (make-named-type :name ',name))
(setf (info :type :kind ',name)
#+sb-xc-host :defined #-sb-xc-host :primitive)
(setf (info :type :builtin ',name) ,var))))
;; KLUDGE: In ANSI, * isn't really the name of a type, it's just a
;; special symbol which can be stuck in some places where an
;; ordinary type can go, e.g. (ARRAY * 1) instead of (ARRAY T 1).
;; In SBCL it also used to denote universal VALUES type.
(frob * *wild-type*)
(frob nil *empty-type*)
(frob t *universal-type*)
;; new in sbcl-0.9.5: these used to be CLASSOID types, but that
;; view of them was incompatible with requirements on the MOP
;; metaobject class hierarchy: the INSTANCE and
;; FUNCALLABLE-INSTANCE types are disjoint (instances have
;; instance-pointer-lowtag; funcallable-instances have
;; fun-pointer-lowtag), while FUNCALLABLE-STANDARD-OBJECT is
;; required to be a subclass of STANDARD-OBJECT. -- CSR,
;; 2005-09-09
(frob instance *instance-type*)
(frob funcallable-instance *funcallable-instance-type*)
;; new in sbcl-1.0.3.3: necessary to act as a join point for the
;; extended sequence hierarchy. (Might be removed later if we use
;; a dedicated FUNDAMENTAL-SEQUENCE class for this.)
(frob extended-sequence *extended-sequence-type*))
(setf *universal-fun-type*
(make-fun-type :wild-args t
:returns *wild-type*)))
(!define-type-method (named :simple-=) (type1 type2)
;;(aver (not (eq type1 *wild-type*))) ; * isn't really a type.
(values (eq type1 type2) t))
(defun cons-type-might-be-empty-type (type)
(declare (type cons-type type))
(let ((car-type (cons-type-car-type type))
(cdr-type (cons-type-cdr-type type)))
(or
(if (cons-type-p car-type)
(cons-type-might-be-empty-type car-type)
(multiple-value-bind (yes surep)
(type= car-type *empty-type*)
(aver (not yes))
(not surep)))
(if (cons-type-p cdr-type)
(cons-type-might-be-empty-type cdr-type)
(multiple-value-bind (yes surep)
(type= cdr-type *empty-type*)
(aver (not yes))
(not surep))))))
(!define-type-method (named :complex-=) (type1 type2)
(cond
((and (eq type2 *empty-type*)
(or (and (intersection-type-p type1)
;; not allowed to be unsure on these... FIXME: keep
;; the list of CL types that are intersection types
;; once and only once.
(not (or (type= type1 (specifier-type 'ratio))
(type= type1 (specifier-type 'keyword)))))
(and (cons-type-p type1)
(cons-type-might-be-empty-type type1))))
;; things like (AND (EQL 0) (SATISFIES ODDP)) or (AND FUNCTION
;; STREAM) can get here. In general, we can't really tell
;; whether these are equal to NIL or not, so
(values nil nil))
((type-might-contain-other-types-p type1)
(invoke-complex-=-other-method type1 type2))
(t (values nil t))))
(!define-type-method (named :simple-subtypep) (type1 type2)
(aver (not (eq type1 *wild-type*))) ; * isn't really a type.
(aver (not (eq type1 type2)))
(values (or (eq type1 *empty-type*)
(eq type2 *wild-type*)
(eq type2 *universal-type*)) t))
(!define-type-method (named :complex-subtypep-arg1) (type1 type2)
;; This AVER causes problems if we write accurate methods for the
;; union (and possibly intersection) types which then delegate to
;; us; while a user shouldn't get here, because of the odd status of
;; *wild-type* a type-intersection executed by the compiler can. -
;; CSR, 2002-04-10
;;
;; (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
(cond ((eq type1 *empty-type*)
t)
(;; When TYPE2 might be the universal type in disguise
(type-might-contain-other-types-p type2)
;; Now that the UNION and HAIRY COMPLEX-SUBTYPEP-ARG2 methods
;; can delegate to us (more or less as CALL-NEXT-METHOD) when
;; they're uncertain, we can't just barf on COMPOUND-TYPE and
;; HAIRY-TYPEs as we used to. Instead we deal with the
;; problem (where at least part of the problem is cases like
;; (SUBTYPEP T '(SATISFIES FOO))
;; or
;; (SUBTYPEP T '(AND (SATISFIES FOO) (SATISFIES BAR)))
;; where the second type is a hairy type like SATISFIES, or
;; is a compound type which might contain a hairy type) by
;; returning uncertainty.
(values nil nil))
((eq type1 *funcallable-instance-type*)
(values (eq type2 (specifier-type 'function)) t))
(t
;; This case would have been picked off by the SIMPLE-SUBTYPEP
;; method, and so shouldn't appear here.
(aver (not (named-type-p type2)))
;; Since TYPE2 is not EQ *UNIVERSAL-TYPE* and is not another
;; named type in disguise, TYPE2 is not a superset of TYPE1.
(values nil t))))
(!define-type-method (named :complex-subtypep-arg2) (type1 type2)
(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
(cond ((eq type2 *universal-type*)
(values t t))
;; some CONS types can conceal danger
((and (cons-type-p type1) (cons-type-might-be-empty-type type1))
(values nil nil))
((type-might-contain-other-types-p type1)
;; those types can be other types in disguise. So we'd
;; better delegate.
(invoke-complex-subtypep-arg1-method type1 type2))
((and (or (eq type2 *instance-type*)
(eq type2 *funcallable-instance-type*))
(member-type-p type1))
;; member types can be subtypep INSTANCE and
;; FUNCALLABLE-INSTANCE in surprising ways.
(invoke-complex-subtypep-arg1-method type1 type2))
((and (eq type2 *extended-sequence-type*) (classoid-p type1))
(let* ((layout (classoid-layout type1))
(inherits (layout-inherits layout))
(sequencep (find (classoid-layout (find-classoid 'sequence))
inherits)))
(values (if sequencep t nil) t)))
((and (eq type2 *instance-type*) (classoid-p type1))
(if (member type1 *non-instance-classoid-types* :key #'find-classoid)
(values nil t)
(let* ((layout (classoid-layout type1))
(inherits (layout-inherits layout))
(functionp (find (classoid-layout (find-classoid 'function))
inherits)))
(cond
(functionp
(values nil t))
((eq type1 (find-classoid 'function))
(values nil t))
((or (structure-classoid-p type1)
#+nil
(condition-classoid-p type1))
(values t t))
(t (values nil nil))))))
((and (eq type2 *funcallable-instance-type*) (classoid-p type1))
(if (member type1 *non-instance-classoid-types* :key #'find-classoid)
(values nil t)
(let* ((layout (classoid-layout type1))
(inherits (layout-inherits layout))
(functionp (find (classoid-layout (find-classoid 'function))
inherits)))
(values (if functionp t nil) t))))
(t
;; FIXME: This seems to rely on there only being 4 or 5
;; NAMED-TYPE values, and the exclusion of various
;; possibilities above. It would be good to explain it and/or
;; rewrite it so that it's clearer.
(values nil t))))
(!define-type-method (named :complex-intersection2) (type1 type2)
;; FIXME: This assertion failed when I added it in sbcl-0.6.11.13.
;; Perhaps when bug 85 is fixed it can be reenabled.
;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
(cond
((eq type2 *extended-sequence-type*)
(typecase type1
(structure-classoid *empty-type*)
(classoid
(if (member type1 *non-instance-classoid-types* :key #'find-classoid)
*empty-type*
(if (find (classoid-layout (find-classoid 'sequence))
(layout-inherits (classoid-layout type1)))
type1
nil)))
(t
(if (or (type-might-contain-other-types-p type1)
(member-type-p type1))
nil
*empty-type*))))
((eq type2 *instance-type*)
(typecase type1
(structure-classoid type1)
(classoid
(if (and (not (member type1 *non-instance-classoid-types*
:key #'find-classoid))
(not (eq type1 (find-classoid 'function)))
(not (find (classoid-layout (find-classoid 'function))
(layout-inherits (classoid-layout type1)))))
nil
*empty-type*))
(t
(if (or (type-might-contain-other-types-p type1)
(member-type-p type1))
nil
*empty-type*))))
((eq type2 *funcallable-instance-type*)
(typecase type1
(structure-classoid *empty-type*)
(classoid
(if (member type1 *non-instance-classoid-types* :key #'find-classoid)
*empty-type*
(if (find (classoid-layout (find-classoid 'function))
(layout-inherits (classoid-layout type1)))
type1
(if (type= type1 (find-classoid 'function))
type2
nil))))
(fun-type nil)
(t
(if (or (type-might-contain-other-types-p type1)
(member-type-p type1))
nil
*empty-type*))))
(t (hierarchical-intersection2 type1 type2))))
(!define-type-method (named :complex-union2) (type1 type2)
;; Perhaps when bug 85 is fixed this can be reenabled.
;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
(cond
((eq type2 *extended-sequence-type*)
(if (classoid-p type1)
(if (or (member type1 *non-instance-classoid-types*
:key #'find-classoid)
(not (find (classoid-layout (find-classoid 'sequence))
(layout-inherits (classoid-layout type1)))))
nil
type2)
nil))
((eq type2 *instance-type*)
(if (classoid-p type1)
(if (or (member type1 *non-instance-classoid-types*
:key #'find-classoid)
(find (classoid-layout (find-classoid 'function))
(layout-inherits (classoid-layout type1))))
nil
type2)
nil))
((eq type2 *funcallable-instance-type*)
(if (classoid-p type1)
(if (or (member type1 *non-instance-classoid-types*
:key #'find-classoid)
(not (find (classoid-layout (find-classoid 'function))
(layout-inherits (classoid-layout type1)))))
nil
(if (eq type1 (specifier-type 'function))
type1
type2))
nil))
(t (hierarchical-union2 type1 type2))))
(!define-type-method (named :negate) (x)
(aver (not (eq x *wild-type*)))
(cond
((eq x *universal-type*) *empty-type*)
((eq x *empty-type*) *universal-type*)
((or (eq x *instance-type*)
(eq x *funcallable-instance-type*)
(eq x *extended-sequence-type*))
(make-negation-type :type x))
(t (bug "NAMED type unexpected: ~S" x))))
(!define-type-method (named :unparse) (x)
(named-type-name x))
;;;; hairy and unknown types
(!define-type-method (hairy :negate) (x)
(make-negation-type :type x))
(!define-type-method (hairy :unparse) (x)
(hairy-type-specifier x))
(!define-type-method (hairy :simple-subtypep) (type1 type2)
(let ((hairy-spec1 (hairy-type-specifier type1))
(hairy-spec2 (hairy-type-specifier type2)))
(cond ((equal-but-no-car-recursion hairy-spec1 hairy-spec2)
(values t t))
((maybe-reparse-specifier! type1)
(csubtypep type1 type2))
((maybe-reparse-specifier! type2)
(csubtypep type1 type2))
(t
(values nil nil)))))
(!define-type-method (hairy :complex-subtypep-arg2) (type1 type2)
(if (maybe-reparse-specifier! type2)
(csubtypep type1 type2)
(let ((specifier (hairy-type-specifier type2)))
(cond ((and (consp specifier) (eql (car specifier) 'satisfies))
(case (cadr specifier)
((keywordp) (if (type= type1 (specifier-type 'symbol))
(values nil t)
(invoke-complex-subtypep-arg1-method type1 type2)))
(t (invoke-complex-subtypep-arg1-method type1 type2))))
(t
(invoke-complex-subtypep-arg1-method type1 type2))))))
(!define-type-method (hairy :complex-subtypep-arg1) (type1 type2)
(if (maybe-reparse-specifier! type1)
(csubtypep type1 type2)
(values nil nil)))
(!define-type-method (hairy :complex-=) (type1 type2)
(if (maybe-reparse-specifier! type2)
(type= type1 type2)
(values nil nil)))
(!define-type-method (hairy :simple-intersection2 :complex-intersection2)
(type1 type2)
(if (type= type1 type2)
type1
nil))
(!define-type-method (hairy :simple-union2)
(type1 type2)
(if (type= type1 type2)
type1
nil))
(!define-type-method (hairy :simple-=) (type1 type2)
(if (equal-but-no-car-recursion (hairy-type-specifier type1)
(hairy-type-specifier type2))
(values t t)
(values nil nil)))
(!def-type-translator satisfies (&whole whole fun)
(declare (ignore fun))
;; Check legality of arguments.
(destructuring-bind (satisfies predicate-name) whole
(declare (ignore satisfies))
(unless (symbolp predicate-name)
(error 'simple-type-error
:datum predicate-name
:expected-type 'symbol
:format-control "The SATISFIES predicate name is not a symbol: ~S"
:format-arguments (list predicate-name))))
;; Create object.
(make-hairy-type :specifier whole))
;;;; negation types
(!define-type-method (negation :negate) (x)
(negation-type-type x))
(!define-type-method (negation :unparse) (x)
(if (type= (negation-type-type x) (specifier-type 'cons))
'atom
`(not ,(type-specifier (negation-type-type x)))))
(!define-type-method (negation :simple-subtypep) (type1 type2)
(csubtypep (negation-type-type type2) (negation-type-type type1)))
(!define-type-method (negation :complex-subtypep-arg2) (type1 type2)
(let* ((complement-type2 (negation-type-type type2))
(intersection2 (type-intersection2 type1
complement-type2)))
(if intersection2
;; FIXME: if uncertain, maybe try arg1?
(type= intersection2 *empty-type*)
(invoke-complex-subtypep-arg1-method type1 type2))))
(!define-type-method (negation :complex-subtypep-arg1) (type1 type2)
;; "Incrementally extended heuristic algorithms tend inexorably toward the
;; incomprehensible." -- http://www.unlambda.com/~james/lambda/lambda.txt
;;
;; You may not believe this. I couldn't either. But then I sat down
;; and drew lots of Venn diagrams. Comments involving a and b refer
;; to the call (subtypep '(not a) 'b) -- CSR, 2002-02-27.
(block nil
;; (Several logical truths in this block are true as long as
;; b/=T. As of sbcl-0.7.1.28, it seems impossible to construct a
;; case with b=T where we actually reach this type method, but
;; we'll test for and exclude this case anyway, since future
;; maintenance might make it possible for it to end up in this
;; code.)
(multiple-value-bind (equal certain)
(type= type2 *universal-type*)
(unless certain
(return (values nil nil)))
(when equal
(return (values t t))))
(let ((complement-type1 (negation-type-type type1)))
;; Do the special cases first, in order to give us a chance if
;; subtype/supertype relationships are hairy.
(multiple-value-bind (equal certain)
(type= complement-type1 type2)
;; If a = b, ~a is not a subtype of b (unless b=T, which was
;; excluded above).
(unless certain
(return (values nil nil)))
(when equal
(return (values nil t))))
;; KLUDGE: ANSI requires that the SUBTYPEP result between any
;; two built-in atomic type specifiers never be uncertain. This
;; is hard to do cleanly for the built-in types whose
;; definitions include (NOT FOO), i.e. CONS and RATIO. However,
;; we can do it with this hack, which uses our global knowledge
;; that our implementation of the type system uses disjoint
;; implementation types to represent disjoint sets (except when
;; types are contained in other types). (This is a KLUDGE
;; because it's fragile. Various changes in internal
;; representation in the type system could make it start
;; confidently returning incorrect results.) -- WHN 2002-03-08
(unless (or (type-might-contain-other-types-p complement-type1)
(type-might-contain-other-types-p type2))
;; Because of the way our types which don't contain other
;; types are disjoint subsets of the space of possible values,
;; (SUBTYPEP '(NOT AA) 'B)=NIL when AA and B are simple (and B
;; is not T, as checked above).
(return (values nil t)))
;; The old (TYPE= TYPE1 TYPE2) branch would never be taken, as
;; TYPE1 and TYPE2 will only be equal if they're both NOT types,
;; and then the :SIMPLE-SUBTYPEP method would be used instead.
;; But a CSUBTYPEP relationship might still hold:
(multiple-value-bind (equal certain)
(csubtypep complement-type1 type2)
;; If a is a subtype of b, ~a is not a subtype of b (unless
;; b=T, which was excluded above).
(unless certain
(return (values nil nil)))
(when equal
(return (values nil t))))
(multiple-value-bind (equal certain)
(csubtypep type2 complement-type1)
;; If b is a subtype of a, ~a is not a subtype of b. (FIXME:
;; That's not true if a=T. Do we know at this point that a is
;; not T?)
(unless certain
(return (values nil nil)))
(when equal
(return (values nil t))))
;; old CSR comment ca. 0.7.2, now obsoleted by the SIMPLE-CTYPE?
;; KLUDGE case above: Other cases here would rely on being able
;; to catch all possible cases, which the fragility of this type
;; system doesn't inspire me; for instance, if a is type= to ~b,
;; then we want T, T; if this is not the case and the types are
;; disjoint (have an intersection of *empty-type*) then we want
;; NIL, T; else if the union of a and b is the *universal-type*
;; then we want T, T. So currently we still claim to be unsure
;; about e.g. (subtypep '(not fixnum) 'single-float).
;;
;; OTOH we might still get here:
(values nil nil))))
(!define-type-method (negation :complex-=) (type1 type2)
;; (NOT FOO) isn't equivalent to anything that's not a negation
;; type, except possibly a type that might contain it in disguise.
(declare (ignore type2))
(if (type-might-contain-other-types-p type1)
(values nil nil)
(values nil t)))
(!define-type-method (negation :simple-intersection2) (type1 type2)
(let ((not1 (negation-type-type type1))
(not2 (negation-type-type type2)))
(cond
((csubtypep not1 not2) type2)
((csubtypep not2 not1) type1)
;; Why no analagous clause to the disjoint in the SIMPLE-UNION2
;; method, below? The clause would read
;;
;; ((EQ (TYPE-UNION NOT1 NOT2) *UNIVERSAL-TYPE*) *EMPTY-TYPE*)
;;
;; but with proper canonicalization of negation types, there's
;; no way of constructing two negation types with union of their
;; negations being the universal type.
(t
(aver (not (eq (type-union not1 not2) *universal-type*)))
nil))))
(defun maybe-complex-array-refinement (type1 type2)
(let* ((ntype (negation-type-type type2))
(ndims (array-type-dimensions ntype))
(ncomplexp (array-type-complexp ntype))
(nseltype (array-type-specialized-element-type ntype))
(neltype (array-type-element-type ntype)))
(if (and (eql ndims '*) (null ncomplexp)
(eql neltype *wild-type*) (eql nseltype *wild-type*))
(make-array-type :dimensions (array-type-dimensions type1)
:complexp t
:element-type (array-type-element-type type1)
:specialized-element-type (array-type-specialized-element-type type1)))))
(!define-type-method (negation :complex-intersection2) (type1 type2)
(cond
((csubtypep type1 (negation-type-type type2)) *empty-type*)
((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
type1)
((and (array-type-p type1) (array-type-p (negation-type-type type2)))
(maybe-complex-array-refinement type1 type2))
(t nil)))
(!define-type-method (negation :simple-union2) (type1 type2)
(let ((not1 (negation-type-type type1))
(not2 (negation-type-type type2)))
(cond
((csubtypep not1 not2) type1)
((csubtypep not2 not1) type2)
((eq (type-intersection not1 not2) *empty-type*)
*universal-type*)
(t nil))))
(!define-type-method (negation :complex-union2) (type1 type2)
(cond
((csubtypep (negation-type-type type2) type1) *universal-type*)
((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
type2)
(t nil)))
(!define-type-method (negation :simple-=) (type1 type2)
(type= (negation-type-type type1) (negation-type-type type2)))
(!def-type-translator not (typespec)
(type-negation (specifier-type typespec)))
;;;; numeric types
(!define-type-class number)
(declaim (inline numeric-type-equal))
(defun numeric-type-equal (type1 type2)
(and (eq (numeric-type-class type1) (numeric-type-class type2))
(eq (numeric-type-format type1) (numeric-type-format type2))
(eq (numeric-type-complexp type1) (numeric-type-complexp type2))))
(!define-type-method (number :simple-=) (type1 type2)
(values
(and (numeric-type-equal type1 type2)
(equalp (numeric-type-low type1) (numeric-type-low type2))
(equalp (numeric-type-high type1) (numeric-type-high type2)))
t))
(!define-type-method (number :negate) (type)
(if (and (null (numeric-type-low type)) (null (numeric-type-high type)))
(make-negation-type :type type)
(type-union
(make-negation-type
:type (modified-numeric-type type :low nil :high nil))
(cond
((null (numeric-type-low type))
(modified-numeric-type
type
:low (let ((h (numeric-type-high type)))
(if (consp h) (car h) (list h)))
:high nil))
((null (numeric-type-high type))
(modified-numeric-type
type
:low nil
:high (let ((l (numeric-type-low type)))
(if (consp l) (car l) (list l)))))
(t (type-union
(modified-numeric-type
type
:low nil
:high (let ((l (numeric-type-low type)))
(if (consp l) (car l) (list l))))
(modified-numeric-type
type
:low (let ((h (numeric-type-high type)))
(if (consp h) (car h) (list h)))
:high nil)))))))
(!define-type-method (number :unparse) (type)
(let* ((complexp (numeric-type-complexp type))
(low (numeric-type-low type))
(high (numeric-type-high type))
(base (case (numeric-type-class type)
(integer 'integer)
(rational 'rational)
(float (or (numeric-type-format type) 'float))
(t 'real))))
(let ((base+bounds
(cond ((and (eq base 'integer) high low)
(let ((high-count (logcount high))
(high-length (integer-length high)))
(cond ((= low 0)
(cond ((= high 0) '(integer 0 0))
((= high 1) 'bit)
((and (= high-count high-length)
(plusp high-length))
`(unsigned-byte ,high-length))
(t
`(mod ,(1+ high)))))
((and (= low sb!xc:most-negative-fixnum)
(= high sb!xc:most-positive-fixnum))
'fixnum)
((and (= low (lognot high))
(= high-count high-length)
(> high-count 0))
`(signed-byte ,(1+ high-length)))
(t
`(integer ,low ,high)))))
(high `(,base ,(or low '*) ,high))
(low
(if (and (eq base 'integer) (= low 0))
'unsigned-byte
`(,base ,low)))
(t base))))
(ecase complexp
(:real
base+bounds)
(:complex
(aver (neq base+bounds 'real))
`(complex ,base+bounds))
((nil)
(aver (eq base+bounds 'real))
'number)))))
(!define-type-method (number :singleton-p) (type)
(let ((low (numeric-type-low type))
(high (numeric-type-high type)))
(if (and low
(eql low high)
(eql (numeric-type-complexp type) :real)
(member (numeric-type-class type) '(integer rational
#-sb-xc-host float)))
(values t (numeric-type-low type))
(values nil nil))))
;;; Return true if X is "less than or equal" to Y, taking open bounds
;;; into consideration. CLOSED is the predicate used to test the bound
;;; on a closed interval (e.g. <=), and OPEN is the predicate used on
;;; open bounds (e.g. <). Y is considered to be the outside bound, in
;;; the sense that if it is infinite (NIL), then the test succeeds,
;;; whereas if X is infinite, then the test fails (unless Y is also
;;; infinite).
;;;
;;; This is for comparing bounds of the same kind, e.g. upper and
;;; upper. Use NUMERIC-BOUND-TEST* for different kinds of bounds.
(defmacro numeric-bound-test (x y closed open)
`(cond ((not ,y) t)
((not ,x) nil)
((consp ,x)
(if (consp ,y)
(,closed (car ,x) (car ,y))
(,closed (car ,x) ,y)))
(t
(if (consp ,y)
(,open ,x (car ,y))
(,closed ,x ,y)))))
;;; This is used to compare upper and lower bounds. This is different
;;; from the same-bound case:
;;; -- Since X = NIL is -infinity, whereas y = NIL is +infinity, we
;;; return true if *either* arg is NIL.
;;; -- an open inner bound is "greater" and also squeezes the interval,
;;; causing us to use the OPEN test for those cases as well.
(defmacro numeric-bound-test* (x y closed open)
`(cond ((not ,y) t)
((not ,x) t)
((consp ,x)
(if (consp ,y)
(,open (car ,x) (car ,y))
(,open (car ,x) ,y)))
(t
(if (consp ,y)
(,open ,x (car ,y))
(,closed ,x ,y)))))
;;; Return whichever of the numeric bounds X and Y is "maximal"
;;; according to the predicates CLOSED (e.g. >=) and OPEN (e.g. >).
;;; This is only meaningful for maximizing like bounds, i.e. upper and
;;; upper. If MAX-P is true, then we return NIL if X or Y is NIL,
;;; otherwise we return the other arg.
(defmacro numeric-bound-max (x y closed open max-p)
(once-only ((n-x x)
(n-y y))
`(cond ((not ,n-x) ,(if max-p nil n-y))
((not ,n-y) ,(if max-p nil n-x))
((consp ,n-x)
(if (consp ,n-y)
(if (,closed (car ,n-x) (car ,n-y)) ,n-x ,n-y)
(if (,open (car ,n-x) ,n-y) ,n-x ,n-y)))
(t
(if (consp ,n-y)
(if (,open (car ,n-y) ,n-x) ,n-y ,n-x)
(if (,closed ,n-y ,n-x) ,n-y ,n-x))))))
(!define-type-method (number :simple-subtypep) (type1 type2)
(let ((class1 (numeric-type-class type1))
(class2 (numeric-type-class type2))
(complexp2 (numeric-type-complexp type2))
(format2 (numeric-type-format type2))
(low1 (numeric-type-low type1))
(high1 (numeric-type-high type1))
(low2 (numeric-type-low type2))
(high2 (numeric-type-high type2)))
;; If one is complex and the other isn't, they are disjoint.
(cond ((not (or (eq (numeric-type-complexp type1) complexp2)
(null complexp2)))
(values nil t))
;; If the classes are specified and different, the types are
;; disjoint unless type2 is RATIONAL and type1 is INTEGER.
;; [ or type1 is INTEGER and type2 is of the form (RATIONAL
;; X X) for integral X, but this is dealt with in the
;; canonicalization inside MAKE-NUMERIC-TYPE ]
((not (or (eq class1 class2)
(null class2)
(and (eq class1 'integer) (eq class2 'rational))))
(values nil t))
;; If the float formats are specified and different, the types
;; are disjoint.
((not (or (eq (numeric-type-format type1) format2)
(null format2)))
(values nil t))
;; Check the bounds.
((and (numeric-bound-test low1 low2 >= >)
(numeric-bound-test high1 high2 <= <))
(values t t))
(t
(values nil t)))))
(!define-superclasses number ((number)) !cold-init-forms)
;;; If the high bound of LOW is adjacent to the low bound of HIGH,
;;; then return true, otherwise NIL.
(defun numeric-types-adjacent (low high)
(let ((low-bound (numeric-type-high low))
(high-bound (numeric-type-low high)))
(cond ((not (and low-bound high-bound)) nil)
((and (consp low-bound) (consp high-bound)) nil)
((consp low-bound)
(let ((low-value (car low-bound)))
(or (eql low-value high-bound)
(and (eql low-value
(load-time-value (make-unportable-float
:single-float-negative-zero)))
(eql high-bound 0f0))
(and (eql low-value 0f0)
(eql high-bound
(load-time-value (make-unportable-float
:single-float-negative-zero))))
(and (eql low-value
(load-time-value (make-unportable-float
:double-float-negative-zero)))
(eql high-bound 0d0))
(and (eql low-value 0d0)
(eql high-bound
(load-time-value (make-unportable-float
:double-float-negative-zero)))))))
((consp high-bound)
(let ((high-value (car high-bound)))
(or (eql high-value low-bound)
(and (eql high-value
(load-time-value (make-unportable-float
:single-float-negative-zero)))
(eql low-bound 0f0))
(and (eql high-value 0f0)
(eql low-bound
(load-time-value (make-unportable-float
:single-float-negative-zero))))
(and (eql high-value
(load-time-value (make-unportable-float
:double-float-negative-zero)))
(eql low-bound 0d0))
(and (eql high-value 0d0)
(eql low-bound
(load-time-value (make-unportable-float
:double-float-negative-zero)))))))
((and (eq (numeric-type-class low) 'integer)
(eq (numeric-type-class high) 'integer))
(eql (1+ low-bound) high-bound))
(t
nil))))
;;; Return a numeric type that is a supertype for both TYPE1 and TYPE2.
;;;
;;; Binding *APPROXIMATE-NUMERIC-UNIONS* to T allows merging non-adjacent
;;; numeric types, eg (OR (INTEGER 0 12) (INTEGER 20 128)) => (INTEGER 0 128),
;;; the compiler does this occasionally during type-derivation to avoid
;;; creating absurdly complex unions of numeric types.
(defvar *approximate-numeric-unions* nil)
(!define-type-method (number :simple-union2) (type1 type2)
(declare (type numeric-type type1 type2))
(cond ((csubtypep type1 type2) type2)
((csubtypep type2 type1) type1)
(t
(let ((class1 (numeric-type-class type1))
(format1 (numeric-type-format type1))
(complexp1 (numeric-type-complexp type1))
(class2 (numeric-type-class type2))
(format2 (numeric-type-format type2))
(complexp2 (numeric-type-complexp type2)))
(cond
((and (eq class1 class2)
(eq format1 format2)
(eq complexp1 complexp2)
(or *approximate-numeric-unions*
(numeric-types-intersect type1 type2)
(numeric-types-adjacent type1 type2)
(numeric-types-adjacent type2 type1)))
(make-numeric-type
:class class1
:format format1
:complexp complexp1
:low (numeric-bound-max (numeric-type-low type1)
(numeric-type-low type2)
<= < t)
:high (numeric-bound-max (numeric-type-high type1)
(numeric-type-high type2)
>= > t)))
;; FIXME: These two clauses are almost identical, and the
;; consequents are in fact identical in every respect.
((and (eq class1 'rational)
(eq class2 'integer)
(eq format1 format2)
(eq complexp1 complexp2)
(integerp (numeric-type-low type2))
(integerp (numeric-type-high type2))
(= (numeric-type-low type2) (numeric-type-high type2))
(or *approximate-numeric-unions*
(numeric-types-adjacent type1 type2)
(numeric-types-adjacent type2 type1)))
(make-numeric-type
:class 'rational
:format format1
:complexp complexp1
:low (numeric-bound-max (numeric-type-low type1)
(numeric-type-low type2)
<= < t)
:high (numeric-bound-max (numeric-type-high type1)
(numeric-type-high type2)
>= > t)))
((and (eq class1 'integer)
(eq class2 'rational)
(eq format1 format2)
(eq complexp1 complexp2)
(integerp (numeric-type-low type1))
(integerp (numeric-type-high type1))
(= (numeric-type-low type1) (numeric-type-high type1))
(or *approximate-numeric-unions*
(numeric-types-adjacent type1 type2)
(numeric-types-adjacent type2 type1)))
(make-numeric-type
:class 'rational
:format format1
:complexp complexp1
:low (numeric-bound-max (numeric-type-low type1)
(numeric-type-low type2)
<= < t)
:high (numeric-bound-max (numeric-type-high type1)
(numeric-type-high type2)
>= > t)))
(t nil))))))
(!cold-init-forms
(setf (info :type :kind 'number)
#+sb-xc-host :defined #-sb-xc-host :primitive)
(setf (info :type :builtin 'number)
(make-numeric-type :complexp nil)))
(!def-type-translator complex (&optional (typespec '*))
(if (eq typespec '*)
(specifier-type '(complex real))
(labels ((not-numeric ()
(error "The component type for COMPLEX is not numeric: ~S"
typespec))
(not-real ()
(error "The component type for COMPLEX is not a subtype of REAL: ~S"
typespec))
(complex1 (component-type)
(unless (numeric-type-p component-type)
(not-numeric))
(when (eq (numeric-type-complexp component-type) :complex)
(not-real))
(if (csubtypep component-type (specifier-type '(eql 0)))
*empty-type*
(modified-numeric-type component-type
:complexp :complex)))
(do-complex (ctype)
(cond
((eq ctype *empty-type*) *empty-type*)
((eq ctype *universal-type*) (not-real))
((typep ctype 'numeric-type) (complex1 ctype))
((typep ctype 'union-type)
(apply #'type-union
(mapcar #'do-complex (union-type-types ctype))))
((typep ctype 'member-type)
(apply #'type-union
(mapcar-member-type-members
(lambda (x) (do-complex (ctype-of x)))
ctype)))
((and (typep ctype 'intersection-type)
;; FIXME: This is very much a
;; not-quite-worst-effort, but we are required to do
;; something here because of our representation of
;; RATIO as (AND RATIONAL (NOT INTEGER)): we must
;; allow users to ask about (COMPLEX RATIO). This
;; will of course fail to work right on such types
;; as (AND INTEGER (SATISFIES ZEROP))...
(let ((numbers (remove-if-not
#'numeric-type-p
(intersection-type-types ctype))))
(and (car numbers)
(null (cdr numbers))
(eq (numeric-type-complexp (car numbers)) :real)
(complex1 (car numbers))))))
(t
(multiple-value-bind (subtypep certainly)
(csubtypep ctype (specifier-type 'real))
(if (and (not subtypep) certainly)
(not-real)
;; ANSI just says that TYPESPEC is any subtype of
;; type REAL, not necessarily a NUMERIC-TYPE. In
;; particular, at this point TYPESPEC could legally
;; be a hairy type like (AND NUMBER (SATISFIES
;; REALP) (SATISFIES ZEROP)), in which case we fall
;; through the logic above and end up here,
;; stumped.
(bug "~@<(known bug #145): The type ~S is too hairy to be ~
used for a COMPLEX component.~:@>"
typespec)))))))
(let ((ctype (specifier-type typespec)))
(do-complex ctype)))))
;;; If X is *, return NIL, otherwise return the bound, which must be a
;;; member of TYPE or a one-element list of a member of TYPE.
#!-sb-fluid (declaim (inline canonicalized-bound))
(defun canonicalized-bound (bound type)
(cond ((eq bound '*) nil)
((or (sb!xc:typep bound type)
(and (consp bound)
(sb!xc:typep (car bound) type)
(null (cdr bound))))
bound)
(t
(error "Bound is not ~S, a ~S or a list of a ~S: ~S"
'*
type
type
bound))))
(!def-type-translator integer (&optional (low '*) (high '*))
(let* ((l (canonicalized-bound low 'integer))
(lb (if (consp l) (1+ (car l)) l))
(h (canonicalized-bound high 'integer))
(hb (if (consp h) (1- (car h)) h)))
(if (and hb lb (< hb lb))
*empty-type*
(make-numeric-type :class 'integer
:complexp :real
:enumerable (not (null (and l h)))
:low lb
:high hb))))
(defmacro !def-bounded-type (type class format)
`(!def-type-translator ,type (&optional (low '*) (high '*))
(let ((lb (canonicalized-bound low ',type))
(hb (canonicalized-bound high ',type)))
(if (not (numeric-bound-test* lb hb <= <))
*empty-type*
(make-numeric-type :class ',class
:format ',format
:low lb
:high hb)))))
(!def-bounded-type rational rational nil)
;;; Unlike CMU CL, we represent the types FLOAT and REAL as
;;; UNION-TYPEs of more primitive types, in order to make
;;; type representation more unique, avoiding problems in the
;;; simplification of things like
;;; (subtypep '(or (single-float -1.0 1.0) (single-float 0.1))
;;; '(or (real -1 7) (single-float 0.1) (single-float -1.0 1.0)))
;;; When we allowed REAL to remain as a separate NUMERIC-TYPE,
;;; it was too easy for the first argument to be simplified to
;;; '(SINGLE-FLOAT -1.0), and for the second argument to be simplified
;;; to '(OR (REAL -1 7) (SINGLE-FLOAT 0.1)) and then for the
;;; SUBTYPEP to fail (returning NIL,T instead of T,T) because
;;; the first argument can't be seen to be a subtype of any of the
;;; terms in the second argument.
;;;
;;; The old CMU CL way was:
;;; (!def-bounded-type float float nil)
;;; (!def-bounded-type real nil nil)
;;;
;;; FIXME: If this new way works for a while with no weird new
;;; problems, we can go back and rip out support for separate FLOAT
;;; and REAL flavors of NUMERIC-TYPE. The new way was added in
;;; sbcl-0.6.11.22, 2001-03-21.
;;;
;;; FIXME: It's probably necessary to do something to fix the
;;; analogous problem with INTEGER and RATIONAL types. Perhaps
;;; bounded RATIONAL types should be represented as (OR RATIO INTEGER).
(defun coerce-bound (bound type upperp inner-coerce-bound-fun)
(declare (type function inner-coerce-bound-fun))
(if (eql bound '*)
bound
(funcall inner-coerce-bound-fun bound type upperp)))
(defun inner-coerce-real-bound (bound type upperp)
#+sb-xc-host (declare (ignore upperp))
(let #+sb-xc-host ()
#-sb-xc-host
((nl (load-time-value (symbol-value 'sb!xc:most-negative-long-float)))
(pl (load-time-value (symbol-value 'sb!xc:most-positive-long-float))))
(let ((nbound (if (consp bound) (car bound) bound))
(consp (consp bound)))
(ecase type
(rational
(if consp
(list (rational nbound))
(rational nbound)))
(float
(cond
((floatp nbound) bound)
(t
;; Coerce to the widest float format available, to avoid
;; unnecessary loss of precision, but don't coerce
;; unrepresentable numbers, except on the host where we
;; shouldn't be making these types (but KLUDGE: can't even
;; assert portably that we're not).
#-sb-xc-host
(ecase upperp
((nil)
(when (< nbound nl) (return-from inner-coerce-real-bound nl)))
((t)
(when (> nbound pl) (return-from inner-coerce-real-bound pl))))
(let ((result (coerce nbound 'long-float)))
(if consp (list result) result)))))))))
(defun inner-coerce-float-bound (bound type upperp)
#+sb-xc-host (declare (ignore upperp))
(let #+sb-xc-host ()
#-sb-xc-host
((nd (load-time-value (symbol-value 'sb!xc:most-negative-double-float)))
(pd (load-time-value (symbol-value 'sb!xc:most-positive-double-float)))
(ns (load-time-value (symbol-value 'sb!xc:most-negative-single-float)))
(ps (load-time-value
(symbol-value 'sb!xc:most-positive-single-float))))
(let ((nbound (if (consp bound) (car bound) bound))
(consp (consp bound)))
(ecase type
(single-float
(cond
((typep nbound 'single-float) bound)
(t
#-sb-xc-host
(ecase upperp
((nil)
(when (< nbound ns) (return-from inner-coerce-float-bound ns)))
((t)
(when (> nbound ps) (return-from inner-coerce-float-bound ps))))
(let ((result (coerce nbound 'single-float)))
(if consp (list result) result)))))
(double-float
(cond
((typep nbound 'double-float) bound)
(t
#-sb-xc-host
(ecase upperp
((nil)
(when (< nbound nd) (return-from inner-coerce-float-bound nd)))
((t)
(when (> nbound pd) (return-from inner-coerce-float-bound pd))))
(let ((result (coerce nbound 'double-float)))
(if consp (list result) result)))))))))
(defun coerced-real-bound (bound type upperp)
(coerce-bound bound type upperp #'inner-coerce-real-bound))
(defun coerced-float-bound (bound type upperp)
(coerce-bound bound type upperp #'inner-coerce-float-bound))
(!def-type-translator real (&optional (low '*) (high '*))
(specifier-type `(or (float ,(coerced-real-bound low 'float nil)
,(coerced-real-bound high 'float t))
(rational ,(coerced-real-bound low 'rational nil)
,(coerced-real-bound high 'rational t)))))
(!def-type-translator float (&optional (low '*) (high '*))
(specifier-type
`(or (single-float ,(coerced-float-bound low 'single-float nil)
,(coerced-float-bound high 'single-float t))
(double-float ,(coerced-float-bound low 'double-float nil)
,(coerced-float-bound high 'double-float t))
#!+long-float ,(error "stub: no long float support yet"))))
(defmacro !define-float-format (f)
`(!def-bounded-type ,f float ,f))
(!define-float-format short-float)
(!define-float-format single-float)
(!define-float-format double-float)
(!define-float-format long-float)
(defun numeric-types-intersect (type1 type2)
(declare (type numeric-type type1 type2))
(let* ((class1 (numeric-type-class type1))
(class2 (numeric-type-class type2))
(complexp1 (numeric-type-complexp type1))
(complexp2 (numeric-type-complexp type2))
(format1 (numeric-type-format type1))
(format2 (numeric-type-format type2))
(low1 (numeric-type-low type1))
(high1 (numeric-type-high type1))
(low2 (numeric-type-low type2))
(high2 (numeric-type-high type2)))
;; If one is complex and the other isn't, then they are disjoint.
(cond ((not (or (eq complexp1 complexp2)
(null complexp1) (null complexp2)))
nil)
;; If either type is a float, then the other must either be
;; specified to be a float or unspecified. Otherwise, they
;; are disjoint.
((and (eq class1 'float)
(not (member class2 '(float nil)))) nil)
((and (eq class2 'float)
(not (member class1 '(float nil)))) nil)
;; If the float formats are specified and different, the
;; types are disjoint.
((not (or (eq format1 format2) (null format1) (null format2)))
nil)
(t
;; Check the bounds. This is a bit odd because we must
;; always have the outer bound of the interval as the
;; second arg.
(if (numeric-bound-test high1 high2 <= <)
(or (and (numeric-bound-test low1 low2 >= >)
(numeric-bound-test* low1 high2 <= <))
(and (numeric-bound-test low2 low1 >= >)
(numeric-bound-test* low2 high1 <= <)))
(or (and (numeric-bound-test* low2 high1 <= <)
(numeric-bound-test low2 low1 >= >))
(and (numeric-bound-test high2 high1 <= <)
(numeric-bound-test* high2 low1 >= >))))))))
;;; Take the numeric bound X and convert it into something that can be
;;; used as a bound in a numeric type with the specified CLASS and
;;; FORMAT. If UP-P is true, then we round up as needed, otherwise we
;;; round down. UP-P true implies that X is a lower bound, i.e. (N) > N.
;;;
;;; This is used by NUMERIC-TYPE-INTERSECTION to mash the bound into
;;; the appropriate type number. X may only be a float when CLASS is
;;; FLOAT.
;;;
;;; ### Note: it is possible for the coercion to a float to overflow
;;; or underflow. This happens when the bound doesn't fit in the
;;; specified format. In this case, we should really return the
;;; appropriate {Most | Least}-{Positive | Negative}-XXX-Float float
;;; of desired format. But these conditions aren't currently signalled
;;; in any useful way.
;;;
;;; Also, when converting an open rational bound into a float we
;;; should probably convert it to a closed bound of the closest float
;;; in the specified format. KLUDGE: In general, open float bounds are
;;; screwed up. -- (comment from original CMU CL)
(defun round-numeric-bound (x class format up-p)
(if x
(let ((cx (if (consp x) (car x) x)))
(ecase class
((nil rational) x)
(integer
(if (and (consp x) (integerp cx))
(if up-p (1+ cx) (1- cx))
(if up-p (ceiling cx) (floor cx))))
(float
(let ((res
(cond
((and format (subtypep format 'double-float))
(if (<= most-negative-double-float cx most-positive-double-float)
(coerce cx format)
nil))
(t
(if (<= most-negative-single-float cx most-positive-single-float)
;; FIXME: bug #389
(coerce cx (or format 'single-float))
nil)))))
(if (consp x) (list res) res)))))
nil))
;;; Handle the case of type intersection on two numeric types. We use
;;; TYPES-EQUAL-OR-INTERSECT to throw out the case of types with no
;;; intersection. If an attribute in TYPE1 is unspecified, then we use
;;; TYPE2's attribute, which must be at least as restrictive. If the
;;; types intersect, then the only attributes that can be specified
;;; and different are the class and the bounds.
;;;
;;; When the class differs, we use the more restrictive class. The
;;; only interesting case is RATIONAL/INTEGER, since RATIONAL includes
;;; INTEGER.
;;;
;;; We make the result lower (upper) bound the maximum (minimum) of
;;; the argument lower (upper) bounds. We convert the bounds into the
;;; appropriate numeric type before maximizing. This avoids possible
;;; confusion due to mixed-type comparisons (but I think the result is
;;; the same).
(!define-type-method (number :simple-intersection2) (type1 type2)
(declare (type numeric-type type1 type2))
(if (numeric-types-intersect type1 type2)
(let* ((class1 (numeric-type-class type1))
(class2 (numeric-type-class type2))
(class (ecase class1
((nil) class2)
((integer float) class1)
(rational (if (eq class2 'integer)
'integer
'rational))))
(format (or (numeric-type-format type1)
(numeric-type-format type2))))
(make-numeric-type
:class class
:format format
:complexp (or (numeric-type-complexp type1)
(numeric-type-complexp type2))
:low (numeric-bound-max
(round-numeric-bound (numeric-type-low type1)
class format t)
(round-numeric-bound (numeric-type-low type2)
class format t)
> >= nil)
:high (numeric-bound-max
(round-numeric-bound (numeric-type-high type1)
class format nil)
(round-numeric-bound (numeric-type-high type2)
class format nil)
< <= nil)))
*empty-type*))
;;; Given two float formats, return the one with more precision. If
;;; either one is null, return NIL.
(defun float-format-max (f1 f2)
(when (and f1 f2)
(dolist (f *float-formats* (error "bad float format: ~S" f1))
(when (or (eq f f1) (eq f f2))
(return f)))))
;;; Return the result of an operation on TYPE1 and TYPE2 according to
;;; the rules of numeric contagion. This is always NUMBER, some float
;;; format (possibly complex) or RATIONAL. Due to rational
;;; canonicalization, there isn't much we can do here with integers or
;;; rational complex numbers.
;;;
;;; If either argument is not a NUMERIC-TYPE, then return NUMBER. This
;;; is useful mainly for allowing types that are technically numbers,
;;; but not a NUMERIC-TYPE.
(defun numeric-contagion (type1 type2)
(if (and (numeric-type-p type1) (numeric-type-p type2))
(let ((class1 (numeric-type-class type1))
(class2 (numeric-type-class type2))
(format1 (numeric-type-format type1))
(format2 (numeric-type-format type2))
(complexp1 (numeric-type-complexp type1))
(complexp2 (numeric-type-complexp type2)))
(cond ((or (null complexp1)
(null complexp2))
(specifier-type 'number))
((eq class1 'float)
(make-numeric-type
:class 'float
:format (ecase class2
(float (float-format-max format1 format2))
((integer rational) format1)
((nil)
;; A double-float with any real number is a
;; double-float.
#!-long-float
(if (eq format1 'double-float)
'double-float
nil)
;; A long-float with any real number is a
;; long-float.
#!+long-float
(if (eq format1 'long-float)
'long-float
nil)))
:complexp (if (or (eq complexp1 :complex)
(eq complexp2 :complex))
:complex
:real)))
((eq class2 'float) (numeric-contagion type2 type1))
((and (eq complexp1 :real) (eq complexp2 :real))
(make-numeric-type
:class (and class1 class2 'rational)
:complexp :real))
(t
(specifier-type 'number))))
(specifier-type 'number)))
;;;; array types
(!define-type-class array)
(!define-type-method (array :simple-=) (type1 type2)
(cond ((not (and (equal (array-type-dimensions type1)
(array-type-dimensions type2))
(eq (array-type-complexp type1)
(array-type-complexp type2))))
(values nil t))
((or (unknown-type-p (array-type-element-type type1))
(unknown-type-p (array-type-element-type type2)))
(type= (array-type-element-type type1)
(array-type-element-type type2)))
(t
(values (type= (array-type-specialized-element-type type1)
(array-type-specialized-element-type type2))
t))))
(!define-type-method (array :negate) (type)
;; FIXME (and hint to PFD): we're vulnerable here to attacks of the
;; form "are (AND ARRAY (NOT (ARRAY T))) and (OR (ARRAY BIT) (ARRAY
;; NIL) (ARRAY CHAR) ...) equivalent?" -- CSR, 2003-12-10
(make-negation-type :type type))
(!define-type-method (array :unparse) (type)
(let* ((dims (array-type-dimensions type))
;; Compare the specialised element type and the
;; derived element type. If the derived type
;; is so small that it jumps to a smaller upgraded
;; element type, use the specialised element type.
;;
;; This protects from unparsing
;; (and (vector (or bit symbol))
;; (vector (or bit character)))
;; i.e., the intersection of two T array types,
;; as a bit vector.
(stype (array-type-specialized-element-type type))
(dtype (array-type-element-type type))
(utype (%upgraded-array-element-type dtype))
(eltype (type-specifier (if (type= stype utype)
dtype
stype)))
(complexp (array-type-complexp type)))
(if (and (eq complexp t) (not *unparse-allow-negation*))
(setq complexp :maybe))
(cond ((eq dims '*)
(if (eq eltype '*)
(ecase complexp
((t) '(and array (not simple-array)))
((:maybe) 'array)
((nil) 'simple-array))
(ecase complexp
((t) `(and (array ,eltype) (not simple-array)))
((:maybe) `(array ,eltype))
((nil) `(simple-array ,eltype)))))
((= (length dims) 1)
(if complexp
(let ((answer
(if (eq (car dims) '*)
(case eltype
(bit 'bit-vector)
((base-char #!-sb-unicode character) 'base-string)
(* 'vector)
(t `(vector ,eltype)))
(case eltype
(bit `(bit-vector ,(car dims)))
((base-char #!-sb-unicode character)
`(base-string ,(car dims)))
(t `(vector ,eltype ,(car dims)))))))
(if (eql complexp :maybe)
answer
`(and ,answer (not simple-array))))
(if (eq (car dims) '*)
(case eltype
(bit 'simple-bit-vector)
((base-char #!-sb-unicode character) 'simple-base-string)
((t) 'simple-vector)
(t `(simple-array ,eltype (*))))
(case eltype
(bit `(simple-bit-vector ,(car dims)))
((base-char #!-sb-unicode character)
`(simple-base-string ,(car dims)))
((t) `(simple-vector ,(car dims)))
(t `(simple-array ,eltype ,dims))))))
(t
(ecase complexp
((t) `(and (array ,eltype ,dims) (not simple-array)))
((:maybe) `(array ,eltype ,dims))
((nil) `(simple-array ,eltype ,dims)))))))
(!define-type-method (array :simple-subtypep) (type1 type2)
(let ((dims1 (array-type-dimensions type1))
(dims2 (array-type-dimensions type2))
(complexp2 (array-type-complexp type2)))
(cond (;; not subtypep unless dimensions are compatible
(not (or (eq dims2 '*)
(and (not (eq dims1 '*))
;; (sbcl-0.6.4 has trouble figuring out that
;; DIMS1 and DIMS2 must be lists at this
;; point, and knowing that is important to
;; compiling EVERY efficiently.)
(= (length (the list dims1))
(length (the list dims2)))
(every (lambda (x y)
(or (eq y '*) (eql x y)))
(the list dims1)
(the list dims2)))))
(values nil t))
;; not subtypep unless complexness is compatible
((not (or (eq complexp2 :maybe)
(eq (array-type-complexp type1) complexp2)))
(values nil t))
;; Since we didn't fail any of the tests above, we win
;; if the TYPE2 element type is wild.
((eq (array-type-element-type type2) *wild-type*)
(values t t))
(;; Since we didn't match any of the special cases above, if
;; either element type is unknown we can only give a good
;; answer if they are the same.
(or (unknown-type-p (array-type-element-type type1))
(unknown-type-p (array-type-element-type type2)))
(if (type= (array-type-element-type type1)
(array-type-element-type type2))
(values t t)
(values nil nil)))
(;; Otherwise, the subtype relationship holds iff the
;; types are equal, and they're equal iff the specialized
;; element types are identical.
t
(values (type= (array-type-specialized-element-type type1)
(array-type-specialized-element-type type2))
t)))))
(!define-superclasses array
((vector vector) (array))
!cold-init-forms)
(defun array-types-intersect (type1 type2)
(declare (type array-type type1 type2))
(let ((dims1 (array-type-dimensions type1))
(dims2 (array-type-dimensions type2))
(complexp1 (array-type-complexp type1))
(complexp2 (array-type-complexp type2)))
;; See whether dimensions are compatible.
(cond ((not (or (eq dims1 '*) (eq dims2 '*)
(and (= (length dims1) (length dims2))
(every (lambda (x y)
(or (eq x '*) (eq y '*) (= x y)))
dims1 dims2))))
(values nil t))
;; See whether complexpness is compatible.
((not (or (eq complexp1 :maybe)
(eq complexp2 :maybe)
(eq complexp1 complexp2)))
(values nil t))
;; Old comment:
;;
;; If either element type is wild, then they intersect.
;; Otherwise, the types must be identical.
;;
;; FIXME: There seems to have been a fair amount of
;; confusion about the distinction between requested element
;; type and specialized element type; here is one of
;; them. If we request an array to hold objects of an
;; unknown type, we can do no better than represent that
;; type as an array specialized on wild-type. We keep the
;; requested element-type in the -ELEMENT-TYPE slot, and
;; *WILD-TYPE* in the -SPECIALIZED-ELEMENT-TYPE. So, here,
;; we must test for the SPECIALIZED slot being *WILD-TYPE*,
;; not just the ELEMENT-TYPE slot. Maybe the return value
;; in that specific case should be T, NIL? Or maybe this
;; function should really be called
;; ARRAY-TYPES-COULD-POSSIBLY-INTERSECT? In any case, this
;; was responsible for bug #123, and this whole issue could
;; do with a rethink and/or a rewrite. -- CSR, 2002-08-21
((or (eq (array-type-specialized-element-type type1) *wild-type*)
(eq (array-type-specialized-element-type type2) *wild-type*)
(type= (array-type-specialized-element-type type1)
(array-type-specialized-element-type type2)))
(values t t))
(t
(values nil t)))))
(defun unite-array-types-complexp (type1 type2)
(let ((complexp1 (array-type-complexp type1))
(complexp2 (array-type-complexp type2)))
(cond
((eq complexp1 complexp2)
;; both types are the same complexp-ity
(values complexp1 t))
((eq complexp1 :maybe)
;; type1 is wild-complexp
(values :maybe type1))
((eq complexp2 :maybe)
;; type2 is wild-complexp
(values :maybe type2))
(t
;; both types partition the complexp-space
(values :maybe nil)))))
(defun unite-array-types-dimensions (type1 type2)
(let ((dims1 (array-type-dimensions type1))
(dims2 (array-type-dimensions type2)))
(cond ((equal dims1 dims2)
;; both types are same dimensionality
(values dims1 t))
((eq dims1 '*)
;; type1 is wild-dimensions
(values '* type1))
((eq dims2 '*)
;; type2 is wild-dimensions
(values '* type2))
((not (= (length dims1) (length dims2)))
;; types have different number of dimensions
(values :incompatible nil))
(t
;; we need to check on a per-dimension basis
(let* ((supertype1 t)
(supertype2 t)
(compatible t)
(result (mapcar (lambda (dim1 dim2)
(cond
((equal dim1 dim2)
dim1)
((eq dim1 '*)
(setf supertype2 nil)
'*)
((eq dim2 '*)
(setf supertype1 nil)
'*)
(t
(setf compatible nil))))
dims1 dims2)))
(cond
((or (not compatible)
(and (not supertype1)
(not supertype2)))
(values :incompatible nil))
((and supertype1 supertype2)
(values result supertype1))
(t
(values result (if supertype1 type1 type2)))))))))
(defun unite-array-types-element-types (type1 type2)
;; FIXME: We'd love to be able to unite the full set of specialized
;; array element types up to *wild-type*, but :simple-union2 is
;; performed pairwise, so we don't have a good hook for it and our
;; representation doesn't allow us to easily detect the situation
;; anyway.
;; But see SIMPLIFY-ARRAY-UNIONS which is able to do something like that.
(let* ((eltype1 (array-type-element-type type1))
(eltype2 (array-type-element-type type2))
(stype1 (array-type-specialized-element-type type1))
(stype2 (array-type-specialized-element-type type2))
(wild1 (eq eltype1 *wild-type*))
(wild2 (eq eltype2 *wild-type*)))
(cond
((type= eltype1 eltype2)
(values eltype1 stype1 t))
(wild1
(values eltype1 stype1 type1))
(wild2
(values eltype2 stype2 type2))
((not (type= stype1 stype2))
;; non-wild types that don't share UAET don't unite
(values :incompatible nil nil))
((csubtypep eltype1 eltype2)
(values eltype2 stype2 type2))
((csubtypep eltype2 eltype1)
(values eltype1 stype1 type1))
(t
(values :incompatible nil nil)))))
(defun unite-array-types-supertypes-compatible-p (&rest supertypes)
;; supertypes are compatible if they are all T, if there is a single
;; NIL and all the rest are T, or if all non-T supertypes are the
;; same and not NIL.
(let ((interesting-supertypes
(remove t supertypes)))
(or (not interesting-supertypes)
(equal interesting-supertypes '(nil))
;; supertypes are (OR BOOLEAN ARRAY-TYPE), so...
(typep (remove-duplicates interesting-supertypes)
'(cons array-type null)))))
(!define-type-method (array :simple-union2) (type1 type2)
(multiple-value-bind
(result-eltype result-stype eltype-supertype)
(unite-array-types-element-types type1 type2)
(multiple-value-bind
(result-complexp complexp-supertype)
(unite-array-types-complexp type1 type2)
(multiple-value-bind
(result-dimensions dimensions-supertype)
(unite-array-types-dimensions type1 type2)
(when (and (not (eq result-dimensions :incompatible))
(not (eq result-eltype :incompatible))
(unite-array-types-supertypes-compatible-p
eltype-supertype complexp-supertype dimensions-supertype))
(make-array-type
:dimensions result-dimensions
:complexp result-complexp
:element-type result-eltype
:specialized-element-type result-stype))))))
(!define-type-method (array :simple-intersection2) (type1 type2)
(declare (type array-type type1 type2))
(if (array-types-intersect type1 type2)
(let ((dims1 (array-type-dimensions type1))
(dims2 (array-type-dimensions type2))
(complexp1 (array-type-complexp type1))
(complexp2 (array-type-complexp type2))
(eltype1 (array-type-element-type type1))
(eltype2 (array-type-element-type type2))
(stype1 (array-type-specialized-element-type type1))
(stype2 (array-type-specialized-element-type type2)))
(make-array-type
:dimensions (cond ((eq dims1 '*) dims2)
((eq dims2 '*) dims1)
(t
(mapcar (lambda (x y) (if (eq x '*) y x))
dims1 dims2)))
:complexp (if (eq complexp1 :maybe) complexp2 complexp1)
:element-type (cond
((eq eltype1 *wild-type*) eltype2)
((eq eltype2 *wild-type*) eltype1)
(t (type-intersection eltype1 eltype2)))
:specialized-element-type (cond
((eq stype1 *wild-type*) stype2)
((eq stype2 *wild-type*) stype1)
(t
(aver (type= stype1 stype2))
stype1))))
*empty-type*))
;;; Check a supplied dimension list to determine whether it is legal,
;;; and return it in canonical form (as either '* or a list).
(defun canonical-array-dimensions (dims)
(typecase dims
((member *) dims)
(integer
(when (minusp dims)
(error "Arrays can't have a negative number of dimensions: ~S" dims))
(when (>= dims sb!xc:array-rank-limit)
(error "array type with too many dimensions: ~S" dims))
(make-list dims :initial-element '*))
(list
(when (>= (length dims) sb!xc:array-rank-limit)
(error "array type with too many dimensions: ~S" dims))
(dolist (dim dims)
(unless (eq dim '*)
(unless (and (integerp dim)
(>= dim 0)
(< dim sb!xc:array-dimension-limit))
(error "bad dimension in array type: ~S" dim))))
dims)
(t
(error "Array dimensions is not a list, integer or *:~% ~S" dims))))
;;;; MEMBER types
(!define-type-class member)
(!define-type-method (member :negate) (type)
(let ((xset (member-type-xset type))
(fp-zeroes (member-type-fp-zeroes type)))
(if fp-zeroes
;; Hairy case, which needs to do a bit of float type
;; canonicalization.
(apply #'type-intersection
(if (xset-empty-p xset)
*universal-type*
(make-negation-type
:type (make-member-type :xset xset)))
(mapcar
(lambda (x)
(let* ((opposite (neg-fp-zero x))
(type (ctype-of opposite)))
(type-union
(make-negation-type
:type (modified-numeric-type type :low nil :high nil))
(modified-numeric-type type :low nil :high (list opposite))
(make-member-type :members (list opposite))
(modified-numeric-type type :low (list opposite) :high nil))))
fp-zeroes))
;; Easy case
(make-negation-type :type type))))
(!define-type-method (member :unparse) (type)
(let ((members (member-type-members type)))
(cond
((equal members '(nil)) 'null)
((type= type (specifier-type 'standard-char)) 'standard-char)
(t `(member ,@members)))))
(!define-type-method (member :singleton-p) (type)
(if (eql 1 (member-type-size type))
(values t (first (member-type-members type)))
(values nil nil)))
(!define-type-method (member :simple-subtypep) (type1 type2)
(values (and (xset-subset-p (member-type-xset type1)
(member-type-xset type2))
(subsetp (member-type-fp-zeroes type1)
(member-type-fp-zeroes type2)))
t))
(!define-type-method (member :complex-subtypep-arg1) (type1 type2)
(block punt
(mapc-member-type-members
(lambda (elt)
(multiple-value-bind (ok surep) (ctypep elt type2)
(unless surep
(return-from punt (values nil nil)))
(unless ok
(return-from punt (values nil t)))))
type1)
(values t t)))
;;; We punt if the odd type is enumerable and intersects with the
;;; MEMBER type. If not enumerable, then it is definitely not a
;;; subtype of the MEMBER type.
(!define-type-method (member :complex-subtypep-arg2) (type1 type2)
(cond ((not (type-enumerable type1)) (values nil t))
((types-equal-or-intersect type1 type2)
(invoke-complex-subtypep-arg1-method type1 type2))
(t (values nil t))))
(!define-type-method (member :simple-intersection2) (type1 type2)
(make-member-type :xset (xset-intersection (member-type-xset type1)
(member-type-xset type2))
:fp-zeroes (intersection (member-type-fp-zeroes type1)
(member-type-fp-zeroes type2))))
(!define-type-method (member :complex-intersection2) (type1 type2)
(block punt
(let ((xset (alloc-xset))
(fp-zeroes nil))
(mapc-member-type-members
(lambda (member)
(multiple-value-bind (ok sure) (ctypep member type1)
(unless sure
(return-from punt nil))
(when ok
(if (fp-zero-p member)
(pushnew member fp-zeroes)
(add-to-xset member xset)))))
type2)
(if (and (xset-empty-p xset) (not fp-zeroes))
*empty-type*
(make-member-type :xset xset :fp-zeroes fp-zeroes)))))
;;; We don't need a :COMPLEX-UNION2, since the only interesting case is
;;; a union type, and the member/union interaction is handled by the
;;; union type method.
(!define-type-method (member :simple-union2) (type1 type2)
(make-member-type :xset (xset-union (member-type-xset type1)
(member-type-xset type2))
:fp-zeroes (union (member-type-fp-zeroes type1)
(member-type-fp-zeroes type2))))
(!define-type-method (member :simple-=) (type1 type2)
(let ((xset1 (member-type-xset type1))
(xset2 (member-type-xset type2))
(l1 (member-type-fp-zeroes type1))
(l2 (member-type-fp-zeroes type2)))
(values (and (eql (xset-count xset1) (xset-count xset2))
(xset-subset-p xset1 xset2)
(xset-subset-p xset2 xset1)
(subsetp l1 l2)
(subsetp l2 l1))
t)))
(!define-type-method (member :complex-=) (type1 type2)
(if (type-enumerable type1)
(multiple-value-bind (val win) (csubtypep type2 type1)
(if (or val (not win))
(values nil nil)
(values nil t)))
(values nil t)))
(!def-type-translator member (&rest members)
(if members
(let (ms numbers char-codes)
(dolist (m (remove-duplicates members))
(typecase m
(float (if (zerop m)
(push m ms)
(push (ctype-of m) numbers)))
(real (push (ctype-of m) numbers))
(character (push (sb!xc:char-code m) char-codes))
(t (push m ms))))
(apply #'type-union
(if ms
(make-member-type :members ms)
*empty-type*)
(if char-codes
(make-character-set-type
:pairs (mapcar (lambda (x) (cons x x))
(sort char-codes #'<)))
*empty-type*)
(nreverse numbers)))
*empty-type*))
;;;; intersection types
;;;;
;;;; Until version 0.6.10.6, SBCL followed the original CMU CL approach
;;;; of punting on all AND types, not just the unreasonably complicated
;;;; ones. The change was motivated by trying to get the KEYWORD type
;;;; to behave sensibly:
;;;; ;; reasonable definition
;;;; (DEFTYPE KEYWORD () '(AND SYMBOL (SATISFIES KEYWORDP)))
;;;; ;; reasonable behavior
;;;; (AVER (SUBTYPEP 'KEYWORD 'SYMBOL))
;;;; Without understanding a little about the semantics of AND, we'd
;;;; get (SUBTYPEP 'KEYWORD 'SYMBOL)=>NIL,NIL and, for entirely
;;;; parallel reasons, (SUBTYPEP 'RATIO 'NUMBER)=>NIL,NIL. That's
;;;; not so good..)
;;;;
;;;; We still follow the example of CMU CL to some extent, by punting
;;;; (to the opaque HAIRY-TYPE) on sufficiently complicated types
;;;; involving AND.
(!define-type-class intersection)
(!define-type-method (intersection :negate) (type)
(apply #'type-union
(mapcar #'type-negation (intersection-type-types type))))
;;; A few intersection types have special names. The others just get
;;; mechanically unparsed.
(!define-type-method (intersection :unparse) (type)
(declare (type ctype type))
(or (find type '(ratio keyword compiled-function) :key #'specifier-type :test #'type=)
`(and ,@(mapcar #'type-specifier (intersection-type-types type)))))
;;; shared machinery for type equality: true if every type in the set
;;; TYPES1 matches a type in the set TYPES2 and vice versa
(defun type=-set (types1 types2)
(flet ((type<=-set (x y)
(declare (type list x y))
(every/type (lambda (x y-element)
(any/type #'type= y-element x))
x y)))
(and/type (type<=-set types1 types2)
(type<=-set types2 types1))))
;;; Two intersection types are equal if their subtypes are equal sets.
;;;
;;; FIXME: Might it be better to use
;;; (AND (SUBTYPEP X Y) (SUBTYPEP Y X))
;;; instead, since SUBTYPEP is the usual relationship that we care
;;; most about, so it would be good to leverage any ingenuity there
;;; in this more obscure method?
(!define-type-method (intersection :simple-=) (type1 type2)
(type=-set (intersection-type-types type1)
(intersection-type-types type2)))
(defun %intersection-complex-subtypep-arg1 (type1 type2)
(type= type1 (type-intersection type1 type2)))
(defun %intersection-simple-subtypep (type1 type2)
(every/type #'%intersection-complex-subtypep-arg1
type1
(intersection-type-types type2)))
(!define-type-method (intersection :simple-subtypep) (type1 type2)
(%intersection-simple-subtypep type1 type2))
(!define-type-method (intersection :complex-subtypep-arg1) (type1 type2)
(%intersection-complex-subtypep-arg1 type1 type2))
(defun %intersection-complex-subtypep-arg2 (type1 type2)
(every/type #'csubtypep type1 (intersection-type-types type2)))
(!define-type-method (intersection :complex-subtypep-arg2) (type1 type2)
(%intersection-complex-subtypep-arg2 type1 type2))
;;; FIXME: This will look eeriely familiar to readers of the UNION
;;; :SIMPLE-INTERSECTION2 :COMPLEX-INTERSECTION2 method. That's
;;; because it was generated by cut'n'paste methods. Given that
;;; intersections and unions have all sorts of symmetries known to
;;; mathematics, it shouldn't be beyond the ken of some programmers to
;;; reflect those symmetries in code in a way that ties them together
;;; more strongly than having two independent near-copies :-/
(!define-type-method (intersection :simple-union2 :complex-union2)
(type1 type2)
;; Within this method, type2 is guaranteed to be an intersection
;; type:
(aver (intersection-type-p type2))
;; Make sure to call only the applicable methods...
(cond ((and (intersection-type-p type1)
(%intersection-simple-subtypep type1 type2)) type2)
((and (intersection-type-p type1)
(%intersection-simple-subtypep type2 type1)) type1)
((and (not (intersection-type-p type1))
(%intersection-complex-subtypep-arg2 type1 type2))
type2)
((and (not (intersection-type-p type1))
(%intersection-complex-subtypep-arg1 type2 type1))
type1)
;; KLUDGE: This special (and somewhat hairy) magic is required
;; to deal with the RATIONAL/INTEGER special case. The UNION
;; of (INTEGER * -1) and (AND (RATIONAL * -1/2) (NOT INTEGER))
;; should be (RATIONAL * -1/2) -- CSR, 2003-02-28
((and (csubtypep type2 (specifier-type 'ratio))
(numeric-type-p type1)
(csubtypep type1 (specifier-type 'integer))
(csubtypep type2
(make-numeric-type
:class 'rational
:complexp nil
:low (if (null (numeric-type-low type1))
nil
(list (1- (numeric-type-low type1))))
:high (if (null (numeric-type-high type1))
nil
(list (1+ (numeric-type-high type1)))))))
(let* ((intersected (intersection-type-types type2))
(remaining (remove (specifier-type '(not integer))
intersected
:test #'type=)))
(and (not (equal intersected remaining))
(type-union type1 (apply #'type-intersection remaining)))))
(t
(let ((accumulator *universal-type*))
(do ((t2s (intersection-type-types type2) (cdr t2s)))
((null t2s) accumulator)
(let ((union (type-union type1 (car t2s))))
(when (union-type-p union)
;; we have to give up here -- there are all sorts of
;; ordering worries, but it's better than before.
;; Doing exactly the same as in the UNION
;; :SIMPLE/:COMPLEX-INTERSECTION2 method causes stack
;; overflow with the mutual recursion never bottoming
;; out.
(if (and (eq accumulator *universal-type*)
(null (cdr t2s)))
;; KLUDGE: if we get here, we have a partially
;; simplified result. While this isn't by any
;; means a universal simplification, including
;; this logic here means that we can get (OR
;; KEYWORD (NOT KEYWORD)) canonicalized to T.
(return union)
(return nil)))
(setf accumulator
(type-intersection accumulator union))))))))
(!def-type-translator and (&whole whole &rest type-specifiers)
(apply #'type-intersection
(mapcar #'specifier-type type-specifiers)))
;;;; union types
(!define-type-class union)
(!define-type-method (union :negate) (type)
(declare (type ctype type))
(apply #'type-intersection
(mapcar #'type-negation (union-type-types type))))
;;; The LIST, FLOAT and REAL types have special names. Other union
;;; types just get mechanically unparsed.
(!define-type-method (union :unparse) (type)
(declare (type ctype type))
(cond
((type= type (specifier-type 'list)) 'list)
((type= type (specifier-type 'float)) 'float)
((type= type (specifier-type 'real)) 'real)
((type= type (specifier-type 'sequence)) 'sequence)
((type= type (specifier-type 'bignum)) 'bignum)
((type= type (specifier-type 'simple-string)) 'simple-string)
((type= type (specifier-type 'string)) 'string)
((type= type (specifier-type 'complex)) 'complex)
((type= type (specifier-type 'standard-char)) 'standard-char)
(t `(or ,@(mapcar #'type-specifier (union-type-types type))))))
;;; Two union types are equal if they are each subtypes of each
;;; other. We need to be this clever because our complex subtypep
;;; methods are now more accurate; we don't get infinite recursion
;;; because the simple-subtypep method delegates to complex-subtypep
;;; of the individual types of type1. - CSR, 2002-04-09
;;;
;;; Previous comment, now obsolete, but worth keeping around because
;;; it is true, though too strong a condition:
;;;
;;; Two union types are equal if their subtypes are equal sets.
(!define-type-method (union :simple-=) (type1 type2)
(multiple-value-bind (subtype certain?)
(csubtypep type1 type2)
(if subtype
(csubtypep type2 type1)
;; we might as well become as certain as possible.
(if certain?
(values nil t)
(multiple-value-bind (subtype certain?)
(csubtypep type2 type1)
(declare (ignore subtype))
(values nil certain?))))))
(!define-type-method (union :complex-=) (type1 type2)
(declare (ignore type1))
(if (some #'type-might-contain-other-types-p
(union-type-types type2))
(values nil nil)
(values nil t)))
;;; Similarly, a union type is a subtype of another if and only if
;;; every element of TYPE1 is a subtype of TYPE2.
(defun union-simple-subtypep (type1 type2)
(every/type (swapped-args-fun #'union-complex-subtypep-arg2)
type2
(union-type-types type1)))
(!define-type-method (union :simple-subtypep) (type1 type2)
(union-simple-subtypep type1 type2))
(defun union-complex-subtypep-arg1 (type1 type2)
(every/type (swapped-args-fun #'csubtypep)
type2
(union-type-types type1)))
(!define-type-method (union :complex-subtypep-arg1) (type1 type2)
(union-complex-subtypep-arg1 type1 type2))
(defun union-complex-subtypep-arg2 (type1 type2)
;; At this stage, we know that type2 is a union type and type1
;; isn't. We might as well check this, though:
(aver (union-type-p type2))
(aver (not (union-type-p type1)))
;; was: (any/type #'csubtypep type1 (union-type-types type2)), which
;; turns out to be too restrictive, causing bug 91.
;;
;; the following reimplementation might look dodgy. It is dodgy. It
;; depends on the union :complex-= method not doing very much work
;; -- certainly, not using subtypep. Reasoning:
;;
;; A is a subset of (B1 u B2)
;; <=> A n (B1 u B2) = A
;; <=> (A n B1) u (A n B2) = A
;;
;; But, we have to be careful not to delegate this type= to
;; something that could invoke subtypep, which might get us back
;; here -> stack explosion. We therefore ensure that the second type
;; (which is the one that's dispatched on) is either a union type
;; (where we've ensured that the complex-= method will not call
;; subtypep) or something with no union types involved, in which
;; case we'll never come back here.
;;
;; If we don't do this, then e.g.
;; (SUBTYPEP '(MEMBER 3) '(OR (SATISFIES FOO) (SATISFIES BAR)))
;; would loop infinitely, as the member :complex-= method is
;; implemented in terms of subtypep.
;;
;; Ouch. - CSR, 2002-04-10
(multiple-value-bind (sub-value sub-certain?)
(type= type1
(apply #'type-union
(mapcar (lambda (x) (type-intersection type1 x))
(union-type-types type2))))
(if sub-certain?
(values sub-value sub-certain?)
;; The ANY/TYPE expression above is a sufficient condition for
;; subsetness, but not a necessary one, so we might get a more
;; certain answer by this CALL-NEXT-METHOD-ish step when the
;; ANY/TYPE expression is uncertain.
(invoke-complex-subtypep-arg1-method type1 type2))))
(!define-type-method (union :complex-subtypep-arg2) (type1 type2)
(union-complex-subtypep-arg2 type1 type2))
(!define-type-method (union :simple-intersection2 :complex-intersection2)
(type1 type2)
;; The CSUBTYPEP clauses here let us simplify e.g.
;; (TYPE-INTERSECTION2 (SPECIFIER-TYPE 'LIST)
;; (SPECIFIER-TYPE '(OR LIST VECTOR)))
;; (where LIST is (OR CONS NULL)).
;;
;; The tests are more or less (CSUBTYPEP TYPE1 TYPE2) and vice
;; versa, but it's important that we pre-expand them into
;; specialized operations on individual elements of
;; UNION-TYPE-TYPES, instead of using the ordinary call to
;; CSUBTYPEP, in order to avoid possibly invoking any methods which
;; might in turn invoke (TYPE-INTERSECTION2 TYPE1 TYPE2) and thus
;; cause infinite recursion.
;;
;; Within this method, type2 is guaranteed to be a union type:
(aver (union-type-p type2))
;; Make sure to call only the applicable methods...
(cond ((and (union-type-p type1)
(union-simple-subtypep type1 type2)) type1)
((and (union-type-p type1)
(union-simple-subtypep type2 type1)) type2)
((and (not (union-type-p type1))
(union-complex-subtypep-arg2 type1 type2))
type1)
((and (not (union-type-p type1))
(union-complex-subtypep-arg1 type2 type1))
type2)
(t
;; KLUDGE: This code accumulates a sequence of TYPE-UNION2
;; operations in a particular order, and gives up if any of
;; the sub-unions turn out not to be simple. In other cases
;; ca. sbcl-0.6.11.15, that approach to taking a union was a
;; bad idea, since it can overlook simplifications which
;; might occur if the terms were accumulated in a different
;; order. It's possible that that will be a problem here too.
;; However, I can't think of a good example to demonstrate
;; it, and without an example to demonstrate it I can't write
;; test cases, and without test cases I don't want to
;; complicate the code to address what's still a hypothetical
;; problem. So I punted. -- WHN 2001-03-20
(let ((accumulator *empty-type*))
(dolist (t2 (union-type-types type2) accumulator)
(setf accumulator
(type-union accumulator
(type-intersection type1 t2))))))))
(!def-type-translator or (&rest type-specifiers)
(let ((type (apply #'type-union
(mapcar #'specifier-type type-specifiers))))
(if (union-type-p type)
(sb!kernel::simplify-array-unions type)
type)))
;;;; CONS types
(!define-type-class cons)
(!def-type-translator cons (&optional (car-type-spec '*) (cdr-type-spec '*))
(let ((car-type (single-value-specifier-type car-type-spec))
(cdr-type (single-value-specifier-type cdr-type-spec)))
(make-cons-type car-type cdr-type)))
(!define-type-method (cons :negate) (type)
(if (and (eq (cons-type-car-type type) *universal-type*)
(eq (cons-type-cdr-type type) *universal-type*))
(make-negation-type :type type)
(type-union
(make-negation-type :type (specifier-type 'cons))
(cond
((and (not (eq (cons-type-car-type type) *universal-type*))
(not (eq (cons-type-cdr-type type) *universal-type*)))
(type-union
(make-cons-type
(type-negation (cons-type-car-type type))
*universal-type*)
(make-cons-type
*universal-type*
(type-negation (cons-type-cdr-type type)))))
((not (eq (cons-type-car-type type) *universal-type*))
(make-cons-type
(type-negation (cons-type-car-type type))
*universal-type*))
((not (eq (cons-type-cdr-type type) *universal-type*))
(make-cons-type
*universal-type*
(type-negation (cons-type-cdr-type type))))
(t (bug "Weird CONS type ~S" type))))))
(!define-type-method (cons :unparse) (type)
(let ((car-eltype (type-specifier (cons-type-car-type type)))
(cdr-eltype (type-specifier (cons-type-cdr-type type))))
(if (and (member car-eltype '(t *))
(member cdr-eltype '(t *)))
'cons
`(cons ,car-eltype ,cdr-eltype))))
(!define-type-method (cons :simple-=) (type1 type2)
(declare (type cons-type type1 type2))
(multiple-value-bind (car-match car-win)
(type= (cons-type-car-type type1) (cons-type-car-type type2))
(multiple-value-bind (cdr-match cdr-win)
(type= (cons-type-cdr-type type1) (cons-type-cdr-type type2))
(cond ((and car-match cdr-match)
(aver (and car-win cdr-win))
(values t t))
(t
(values nil
;; FIXME: Ideally we would like to detect and handle
;; (CONS UNKNOWN INTEGER) (CONS UNKNOWN SYMBOL) => NIL, T
;; but just returning a secondary true on (and car-win cdr-win)
;; unfortunately breaks other things. --NS 2006-08-16
(and (or (and (not car-match) car-win)
(and (not cdr-match) cdr-win))
(not (and (cons-type-might-be-empty-type type1)
(cons-type-might-be-empty-type type2))))))))))
(!define-type-method (cons :simple-subtypep) (type1 type2)
(declare (type cons-type type1 type2))
(multiple-value-bind (val-car win-car)
(csubtypep (cons-type-car-type type1) (cons-type-car-type type2))
(multiple-value-bind (val-cdr win-cdr)
(csubtypep (cons-type-cdr-type type1) (cons-type-cdr-type type2))
(if (and val-car val-cdr)
(values t (and win-car win-cdr))
(values nil (or (and (not val-car) win-car)
(and (not val-cdr) win-cdr)))))))
;;; Give up if a precise type is not possible, to avoid returning
;;; overly general types.
(!define-type-method (cons :simple-union2) (type1 type2)
(declare (type cons-type type1 type2))
(let ((car-type1 (cons-type-car-type type1))
(car-type2 (cons-type-car-type type2))
(cdr-type1 (cons-type-cdr-type type1))
(cdr-type2 (cons-type-cdr-type type2))
car-not1
car-not2)
;; UGH. -- CSR, 2003-02-24
(macrolet ((frob-car (car1 car2 cdr1 cdr2
&optional (not1 nil not1p))
`(type-union
(make-cons-type ,car1 (type-union ,cdr1 ,cdr2))
(make-cons-type
(type-intersection ,car2
,(if not1p
not1
`(type-negation ,car1)))
,cdr2))))
(cond ((type= car-type1 car-type2)
(make-cons-type car-type1
(type-union cdr-type1 cdr-type2)))
((type= cdr-type1 cdr-type2)
(make-cons-type (type-union car-type1 car-type2)
cdr-type1))
((csubtypep car-type1 car-type2)
(frob-car car-type1 car-type2 cdr-type1 cdr-type2))
((csubtypep car-type2 car-type1)
(frob-car car-type2 car-type1 cdr-type2 cdr-type1))
;; more general case of the above, but harder to compute
((progn
(setf car-not1 (type-negation car-type1))
(multiple-value-bind (yes win)
(csubtypep car-type2 car-not1)
(and (not yes) win)))
(frob-car car-type1 car-type2 cdr-type1 cdr-type2 car-not1))
((progn
(setf car-not2 (type-negation car-type2))
(multiple-value-bind (yes win)
(csubtypep car-type1 car-not2)
(and (not yes) win)))
(frob-car car-type2 car-type1 cdr-type2 cdr-type1 car-not2))
;; Don't put these in -- consider the effect of taking the
;; union of (CONS (INTEGER 0 2) (INTEGER 5 7)) and
;; (CONS (INTEGER 0 3) (INTEGER 5 6)).
#+nil
((csubtypep cdr-type1 cdr-type2)
(frob-cdr car-type1 car-type2 cdr-type1 cdr-type2))
#+nil
((csubtypep cdr-type2 cdr-type1)
(frob-cdr car-type2 car-type1 cdr-type2 cdr-type1))))))
(!define-type-method (cons :simple-intersection2) (type1 type2)
(declare (type cons-type type1 type2))
(let ((car-int2 (type-intersection2 (cons-type-car-type type1)
(cons-type-car-type type2)))
(cdr-int2 (type-intersection2 (cons-type-cdr-type type1)
(cons-type-cdr-type type2))))
(cond
((and car-int2 cdr-int2) (make-cons-type car-int2 cdr-int2))
(car-int2 (make-cons-type car-int2
(type-intersection
(cons-type-cdr-type type1)
(cons-type-cdr-type type2))))
(cdr-int2 (make-cons-type
(type-intersection (cons-type-car-type type1)
(cons-type-car-type type2))
cdr-int2)))))
(!define-superclasses cons ((cons)) !cold-init-forms)
;;;; CHARACTER-SET types
(!define-type-class character-set)
(!def-type-translator character-set
(&optional (pairs '((0 . #.(1- sb!xc:char-code-limit)))))
(make-character-set-type :pairs pairs))
(!define-type-method (character-set :negate) (type)
(let ((pairs (character-set-type-pairs type)))
(if (and (= (length pairs) 1)
(= (caar pairs) 0)
(= (cdar pairs) (1- sb!xc:char-code-limit)))
(make-negation-type :type type)
(let ((not-character
(make-negation-type
:type (make-character-set-type
:pairs '((0 . #.(1- sb!xc:char-code-limit)))))))
(type-union
not-character
(make-character-set-type
:pairs (let (not-pairs)
(when (> (caar pairs) 0)
(push (cons 0 (1- (caar pairs))) not-pairs))
(do* ((tail pairs (cdr tail))
(high1 (cdar tail) (cdar tail))
(low2 (caadr tail) (caadr tail)))
((null (cdr tail))
(when (< (cdar tail) (1- sb!xc:char-code-limit))
(push (cons (1+ (cdar tail))
(1- sb!xc:char-code-limit))
not-pairs))
(nreverse not-pairs))
(push (cons (1+ high1) (1- low2)) not-pairs)))))))))
(!define-type-method (character-set :unparse) (type)
(cond
((type= type (specifier-type 'character)) 'character)
((type= type (specifier-type 'base-char)) 'base-char)
((type= type (specifier-type 'extended-char)) 'extended-char)
((type= type (specifier-type 'standard-char)) 'standard-char)
(t
;; Unparse into either MEMBER or CHARACTER-SET. We use MEMBER if there
;; are at most as many characters than there are character code ranges.
(let* ((pairs (character-set-type-pairs type))
(count (length pairs))
(chars (loop named outer
for (low . high) in pairs
nconc (loop for code from low upto high
collect (sb!xc:code-char code)
when (minusp (decf count))
do (return-from outer t)))))
(if (eq chars t)
`(character-set ,pairs)
`(member ,@chars))))))
(!define-type-method (character-set :singleton-p) (type)
(let* ((pairs (character-set-type-pairs type))
(pair (first pairs)))
(if (and (typep pairs '(cons t null))
(eql (car pair) (cdr pair)))
(values t (code-char (car pair)))
(values nil nil))))
(!define-type-method (character-set :simple-=) (type1 type2)
(let ((pairs1 (character-set-type-pairs type1))
(pairs2 (character-set-type-pairs type2)))
(values (equal pairs1 pairs2) t)))
(!define-type-method (character-set :simple-subtypep) (type1 type2)
(values
(dolist (pair (character-set-type-pairs type1) t)
(unless (position pair (character-set-type-pairs type2)
:test (lambda (x y) (and (>= (car x) (car y))
(<= (cdr x) (cdr y)))))
(return nil)))
t))
(!define-type-method (character-set :simple-union2) (type1 type2)
;; KLUDGE: the canonizing in the MAKE-CHARACTER-SET-TYPE function
;; actually does the union for us. It might be a little fragile to
;; rely on it.
(make-character-set-type
:pairs (merge 'list
(copy-alist (character-set-type-pairs type1))
(copy-alist (character-set-type-pairs type2))
#'< :key #'car)))
(!define-type-method (character-set :simple-intersection2) (type1 type2)
;; KLUDGE: brute force.
#|
(let (pairs)
(dolist (pair1 (character-set-type-pairs type1)
(make-character-set-type
:pairs (sort pairs #'< :key #'car)))
(dolist (pair2 (character-set-type-pairs type2))
(cond
((<= (car pair1) (car pair2) (cdr pair1))
(push (cons (car pair2) (min (cdr pair1) (cdr pair2))) pairs))
((<= (car pair2) (car pair1) (cdr pair2))
(push (cons (car pair1) (min (cdr pair1) (cdr pair2))) pairs))))))
|#
(make-character-set-type
:pairs (intersect-type-pairs
(character-set-type-pairs type1)
(character-set-type-pairs type2))))
;;;
;;; Intersect two ordered lists of pairs
;;; Each list is of the form ((start1 . end1) ... (startn . endn)),
;;; where start1 <= end1 < start2 <= end2 < ... < startn <= endn.
;;; Each pair represents the integer interval start..end.
;;;
(defun intersect-type-pairs (alist1 alist2)
(if (and alist1 alist2)
(let ((res nil)
(pair1 (pop alist1))
(pair2 (pop alist2)))
(loop
(when (> (car pair1) (car pair2))
(rotatef pair1 pair2)
(rotatef alist1 alist2))
(let ((pair1-cdr (cdr pair1)))
(cond
((> (car pair2) pair1-cdr)
;; No over lap -- discard pair1
(unless alist1 (return))
(setq pair1 (pop alist1)))
((<= (cdr pair2) pair1-cdr)
(push (cons (car pair2) (cdr pair2)) res)
(cond
((= (cdr pair2) pair1-cdr)
(unless alist1 (return))
(unless alist2 (return))
(setq pair1 (pop alist1)
pair2 (pop alist2)))
(t ;; (< (cdr pair2) pair1-cdr)
(unless alist2 (return))
(setq pair1 (cons (1+ (cdr pair2)) pair1-cdr))
(setq pair2 (pop alist2)))))
(t ;; (> (cdr pair2) (cdr pair1))
(push (cons (car pair2) pair1-cdr) res)
(unless alist1 (return))
(setq pair2 (cons (1+ pair1-cdr) (cdr pair2)))
(setq pair1 (pop alist1))))))
(nreverse res))
nil))
;;; Return the type that describes all objects that are in X but not
;;; in Y. If we can't determine this type, then return NIL.
;;;
;;; For now, we only are clever dealing with union and member types.
;;; If either type is not a union type, then we pretend that it is a
;;; union of just one type. What we do is remove from X all the types
;;; that are a subtype any type in Y. If any type in X intersects with
;;; a type in Y but is not a subtype, then we give up.
;;;
;;; We must also special-case any member type that appears in the
;;; union. We remove from X's members all objects that are TYPEP to Y.
;;; If Y has any members, we must be careful that none of those
;;; members are CTYPEP to any of Y's non-member types. We give up in
;;; this case, since to compute that difference we would have to break
;;; the type from X into some collection of types that represents the
;;; type without that particular element. This seems too hairy to be
;;; worthwhile, given its low utility.
(defun type-difference (x y)
(if (and (numeric-type-p x) (numeric-type-p y))
;; Numeric types are easy. Are there any others we should handle like this?
(type-intersection x (type-negation y))
(let ((x-types (if (union-type-p x) (union-type-types x) (list x)))
(y-types (if (union-type-p y) (union-type-types y) (list y))))
(collect ((res))
(dolist (x-type x-types)
(if (member-type-p x-type)
(let ((xset (alloc-xset))
(fp-zeroes nil))
(mapc-member-type-members
(lambda (elt)
(multiple-value-bind (ok sure) (ctypep elt y)
(unless sure
(return-from type-difference nil))
(unless ok
(if (fp-zero-p elt)
(pushnew elt fp-zeroes)
(add-to-xset elt xset)))))
x-type)
(unless (and (xset-empty-p xset) (not fp-zeroes))
(res (make-member-type :xset xset :fp-zeroes fp-zeroes))))
(dolist (y-type y-types (res x-type))
(multiple-value-bind (val win) (csubtypep x-type y-type)
(unless win (return-from type-difference nil))
(when val (return))
(when (types-equal-or-intersect x-type y-type)
(return-from type-difference nil))))))
(let ((y-mem (find-if #'member-type-p y-types)))
(when y-mem
(dolist (x-type x-types)
(unless (member-type-p x-type)
(mapc-member-type-members
(lambda (member)
(multiple-value-bind (ok sure) (ctypep member x-type)
(when (or (not sure) ok)
(return-from type-difference nil))))
y-mem)))))
(apply #'type-union (res))))))
(!def-type-translator array (&optional (element-type '*)
(dimensions '*))
(let ((eltype (if (eq element-type '*)
*wild-type*
(specifier-type element-type))))
(make-array-type :dimensions (canonical-array-dimensions dimensions)
:complexp :maybe
:element-type eltype
:specialized-element-type (%upgraded-array-element-type
eltype))))
(!def-type-translator simple-array (&optional (element-type '*)
(dimensions '*))
(let ((eltype (if (eq element-type '*)
*wild-type*
(specifier-type element-type))))
(make-array-type :dimensions (canonical-array-dimensions dimensions)
:complexp nil
:element-type eltype
:specialized-element-type (%upgraded-array-element-type
eltype))))
;;;; SIMD-PACK types
#!+sb-simd-pack
(progn
(!define-type-class simd-pack)
(!def-type-translator simd-pack (&optional (element-type-spec '*))
(if (eql element-type-spec '*)
(%make-simd-pack-type *simd-pack-element-types*)
(make-simd-pack-type (single-value-specifier-type element-type-spec))))
(!define-type-method (simd-pack :negate) (type)
(let ((remaining (set-difference *simd-pack-element-types*
(simd-pack-type-element-type type)))
(not-simd-pack (make-negation-type :type (specifier-type 'simd-pack))))
(if remaining
(type-union not-simd-pack (%make-simd-pack-type remaining))
not-simd-pack)))
(!define-type-method (simd-pack :unparse) (type)
(let ((eltypes (simd-pack-type-element-type type)))
(cond ((equal eltypes *simd-pack-element-types*)
'simd-pack)
((= 1 (length eltypes))
`(simd-pack ,(first eltypes)))
(t
`(or ,@(mapcar (lambda (eltype)
`(simd-pack ,eltype))
eltypes))))))
(!define-type-method (simd-pack :simple-=) (type1 type2)
(declare (type simd-pack-type type1 type2))
(null (set-exclusive-or (simd-pack-type-element-type type1)
(simd-pack-type-element-type type2))))
(!define-type-method (simd-pack :simple-subtypep) (type1 type2)
(declare (type simd-pack-type type1 type2))
(subsetp (simd-pack-type-element-type type1)
(simd-pack-type-element-type type2)))
(!define-type-method (simd-pack :simple-union2) (type1 type2)
(declare (type simd-pack-type type1 type2))
(%make-simd-pack-type (union (simd-pack-type-element-type type1)
(simd-pack-type-element-type type2))))
(!define-type-method (simd-pack :simple-intersection2) (type1 type2)
(declare (type simd-pack-type type1 type2))
(let ((intersection (intersection (simd-pack-type-element-type type1)
(simd-pack-type-element-type type2))))
(if intersection
(%make-simd-pack-type intersection)
*empty-type*)))
(!define-superclasses simd-pack ((simd-pack)) !cold-init-forms))
;;;; utilities shared between cross-compiler and target system
;;; Does the type derived from compilation of an actual function
;;; definition satisfy declarations of a function's type?
(defun defined-ftype-matches-declared-ftype-p (defined-ftype declared-ftype)
(declare (type ctype defined-ftype declared-ftype))
(flet ((is-built-in-class-function-p (ctype)
(and (built-in-classoid-p ctype)
(eq (built-in-classoid-name ctype) 'function))))
(cond (;; DECLARED-FTYPE could certainly be #<BUILT-IN-CLASS FUNCTION>;
;; that's what happens when we (DECLAIM (FTYPE FUNCTION FOO)).
(is-built-in-class-function-p declared-ftype)
;; In that case, any definition satisfies the declaration.
t)
(;; It's not clear whether or how DEFINED-FTYPE might be
;; #<BUILT-IN-CLASS FUNCTION>, but it's not obviously
;; invalid, so let's handle that case too, just in case.
(is-built-in-class-function-p defined-ftype)
;; No matter what DECLARED-FTYPE might be, we can't prove
;; that an object of type FUNCTION doesn't satisfy it, so
;; we return success no matter what.
t)
(;; Otherwise both of them must be FUN-TYPE objects.
t
;; FIXME: For now we only check compatibility of the return
;; type, not argument types, and we don't even check the
;; return type very precisely (as per bug 94a). It would be
;; good to do a better job. Perhaps to check the
;; compatibility of the arguments, we should (1) redo
;; VALUES-TYPES-EQUAL-OR-INTERSECT as
;; ARGS-TYPES-EQUAL-OR-INTERSECT, and then (2) apply it to
;; the ARGS-TYPE slices of the FUN-TYPEs. (ARGS-TYPE
;; is a base class both of VALUES-TYPE and of FUN-TYPE.)
(values-types-equal-or-intersect
(fun-type-returns defined-ftype)
(fun-type-returns declared-ftype))))))
;;; This messy case of CTYPE for NUMBER is shared between the
;;; cross-compiler and the target system.
(defun ctype-of-number (x)
(let ((num (if (complexp x) (realpart x) x)))
(multiple-value-bind (complexp low high)
(if (complexp x)
(let ((imag (imagpart x)))
(values :complex (min num imag) (max num imag)))
(values :real num num))
(make-numeric-type :class (etypecase num
(integer (if (complexp x)
(if (integerp (imagpart x))
'integer
'rational)
'integer))
(rational 'rational)
(float 'float))
:format (and (floatp num) (float-format-name num))
:complexp complexp
:low low
:high high))))
(locally
;; Why SAFETY 0? To suppress the is-it-the-right-structure-type
;; checking for declarations in structure accessors. Otherwise we
;; can get caught in a chicken-and-egg bootstrapping problem, whose
;; symptom on x86 OpenBSD sbcl-0.pre7.37.flaky5.22 is an illegal
;; instruction trap. I haven't tracked it down, but I'm guessing it
;; has to do with setting LAYOUTs when the LAYOUT hasn't been set
;; yet. -- WHN
(declare (optimize (safety 0)))
(!defun-from-collected-cold-init-forms !late-type-cold-init))
(/show0 "late-type.lisp end of file")