Learn how easy it is to sync an existing GitHub or Google Code repo to a SourceForge project! See Demo

Close

[1fa173]: src / code / defboot.lisp Maximize Restore History

Download this file

defboot.lisp    743 lines (685 with data), 33.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
;;;; bootstrapping fundamental machinery (e.g. DEFUN, DEFCONSTANT,
;;;; DEFVAR) from special forms and primitive functions
;;;;
;;;; KLUDGE: The bootstrapping aspect of this is now obsolete. It was
;;;; originally intended that this file file would be loaded into a
;;;; Lisp image which had Common Lisp primitives defined, and DEFMACRO
;;;; defined, and little else. Since then that approach has been
;;;; dropped and this file has been modified somewhat to make it work
;;;; more cleanly when used to predefine macros at
;;;; build-the-cross-compiler time.
;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.
(in-package "SB!IMPL")
;;;; IN-PACKAGE
(defmacro-mundanely in-package (string-designator)
(let ((string (string string-designator)))
`(eval-when (:compile-toplevel :load-toplevel :execute)
(setq *package* (find-undeleted-package-or-lose ,string)))))
;;;; MULTIPLE-VALUE-FOO
(defun list-of-symbols-p (x)
(and (listp x)
(every #'symbolp x)))
(defmacro-mundanely multiple-value-bind (vars value-form &body body)
(if (list-of-symbols-p vars)
;; It's unclear why it would be important to special-case the LENGTH=1 case
;; at this level, but the CMU CL code did it, so.. -- WHN 19990411
(if (= (length vars) 1)
`(let ((,(car vars) ,value-form))
,@body)
(let ((ignore (sb!xc:gensym)))
`(multiple-value-call #'(lambda (&optional ,@(mapcar #'list vars)
&rest ,ignore)
(declare (ignore ,ignore))
,@body)
,value-form)))
(error "Vars is not a list of symbols: ~S" vars)))
(defmacro-mundanely multiple-value-setq (vars value-form)
(unless (list-of-symbols-p vars)
(error "Vars is not a list of symbols: ~S" vars))
;; MULTIPLE-VALUE-SETQ is required to always return just the primary
;; value of the value-from, even if there are no vars. (SETF VALUES)
;; in turn is required to return as many values as there are
;; value-places, hence this:
(if vars
`(values (setf (values ,@vars) ,value-form))
`(values ,value-form)))
(defmacro-mundanely multiple-value-list (value-form)
`(multiple-value-call #'list ,value-form))
;;;; various conditional constructs
;;; COND defined in terms of IF
(defmacro-mundanely cond (&rest clauses)
(if (endp clauses)
nil
(let ((clause (first clauses))
(more (rest clauses)))
(if (atom clause)
(error "COND clause is not a list: ~S" clause)
(let ((test (first clause))
(forms (rest clause)))
(if (endp forms)
(let ((n-result (gensym)))
`(let ((,n-result ,test))
(if ,n-result
,n-result
(cond ,@more))))
(if (eq t test)
;; THE to perserve non-toplevelness for FOO in
;; (COND (T (FOO)))
`(the t (progn ,@forms))
`(if ,test
(progn ,@forms)
,(when more `(cond ,@more))))))))))
(defmacro-mundanely when (test &body forms)
#!+sb-doc
"If the first argument is true, the rest of the forms are
evaluated as a PROGN."
`(if ,test (progn ,@forms) nil))
(defmacro-mundanely unless (test &body forms)
#!+sb-doc
"If the first argument is not true, the rest of the forms are
evaluated as a PROGN."
`(if ,test nil (progn ,@forms)))
(defmacro-mundanely and (&rest forms)
(cond ((endp forms) t)
((endp (rest forms))
;; Preserve non-toplevelness of the form!
`(the t ,(first forms)))
(t
`(if ,(first forms)
(and ,@(rest forms))
nil))))
(defmacro-mundanely or (&rest forms)
(cond ((endp forms) nil)
((endp (rest forms))
;; Preserve non-toplevelness of the form!
`(the t ,(first forms)))
(t
(let ((n-result (gensym)))
`(let ((,n-result ,(first forms)))
(if ,n-result
,n-result
(or ,@(rest forms))))))))
;;;; various sequencing constructs
(flet ((prog-expansion-from-let (varlist body-decls let)
(multiple-value-bind (body decls)
(parse-body body-decls :doc-string-allowed nil)
`(block nil
(,let ,varlist
,@decls
(tagbody ,@body))))))
(defmacro-mundanely prog (varlist &body body-decls)
(prog-expansion-from-let varlist body-decls 'let))
(defmacro-mundanely prog* (varlist &body body-decls)
(prog-expansion-from-let varlist body-decls 'let*)))
(defmacro-mundanely prog1 (result &body body)
(let ((n-result (gensym)))
`(let ((,n-result ,result))
,@body
,n-result)))
(defmacro-mundanely prog2 (form1 result &body body)
`(prog1 (progn ,form1 ,result) ,@body))
;;;; DEFUN
;;; Should we save the inline expansion of the function named NAME?
(defun inline-fun-name-p (name)
(or
;; the normal reason for saving the inline expansion
(let ((inlinep (info :function :inlinep name)))
(member inlinep '(:inline :maybe-inline)))
;; another reason for saving the inline expansion: If the
;; ANSI-recommended idiom
;; (DECLAIM (INLINE FOO))
;; (DEFUN FOO ..)
;; (DECLAIM (NOTINLINE FOO))
;; has been used, and then we later do another
;; (DEFUN FOO ..)
;; without a preceding
;; (DECLAIM (INLINE FOO))
;; what should we do with the old inline expansion when we see the
;; new DEFUN? Overwriting it with the new definition seems like
;; the only unsurprising choice.
(info :function :inline-expansion-designator name)))
(defmacro-mundanely defun (&environment env name args &body body)
"Define a function at top level."
#+sb-xc-host
(unless (symbol-package (fun-name-block-name name))
(warn "DEFUN of uninterned function name ~S (tricky for GENESIS)" name))
(multiple-value-bind (forms decls doc) (parse-body body)
(let* (;; stuff shared between LAMBDA and INLINE-LAMBDA and NAMED-LAMBDA
(lambda-guts `(,args
,@decls
(block ,(fun-name-block-name name)
,@forms)))
(lambda `(lambda ,@lambda-guts))
#-sb-xc-host
(named-lambda `(named-lambda ,name ,@lambda-guts))
(inline-lambda
(when (inline-fun-name-p name)
;; we want to attempt to inline, so complain if we can't
(or (sb!c:maybe-inline-syntactic-closure lambda env)
(progn
(#+sb-xc-host warn
#-sb-xc-host sb!c:maybe-compiler-notify
"lexical environment too hairy, can't inline DEFUN ~S"
name)
nil)))))
`(progn
;; In cross-compilation of toplevel DEFUNs, we arrange for
;; the LAMBDA to be statically linked by GENESIS.
;;
;; It may seem strangely inconsistent not to use NAMED-LAMBDA
;; here instead of LAMBDA. The reason is historical:
;; COLD-FSET was written before NAMED-LAMBDA, and has special
;; logic of its own to notify the compiler about NAME.
#+sb-xc-host
(cold-fset ,name ,lambda)
(eval-when (:compile-toplevel)
(sb!c:%compiler-defun ',name ',inline-lambda t))
(eval-when (:load-toplevel :execute)
(%defun ',name
;; In normal compilation (not for cold load) this is
;; where the compiled LAMBDA first appears. In
;; cross-compilation, we manipulate the
;; previously-statically-linked LAMBDA here.
#-sb-xc-host ,named-lambda
#+sb-xc-host (fdefinition ',name)
,doc
',inline-lambda
(sb!c:source-location)))))))
#-sb-xc-host
(defun %defun (name def doc inline-lambda source-location)
(declare (type function def))
(declare (type (or null simple-string) doc))
(aver (legal-fun-name-p name)) ; should've been checked by DEFMACRO DEFUN
(sb!c:%compiler-defun name inline-lambda nil)
(when (fboundp name)
(/show0 "redefining NAME in %DEFUN")
(warn 'sb!kernel::redefinition-with-defun
:name name
:new-function def
:new-location source-location))
(setf (sb!xc:fdefinition name) def)
;; %COMPILER-DEFUN doesn't do this except at compile-time, when it
;; also checks package locks. By doing this here we let (SETF
;; FDEFINITION) do the load-time package lock checking before
;; we frob any existing inline expansions.
(sb!c::%set-inline-expansion name nil inline-lambda)
(sb!c::note-name-defined name :function)
(when doc
(setf (%fun-doc def) doc))
name)
;;;; DEFVAR and DEFPARAMETER
(defmacro-mundanely defvar (var &optional (val nil valp) (doc nil docp))
#!+sb-doc
"Define a special variable at top level. Declare the variable
SPECIAL and, optionally, initialize it. If the variable already has a
value, the old value is not clobbered. The third argument is an optional
documentation string for the variable."
`(progn
(eval-when (:compile-toplevel)
(%compiler-defvar ',var))
(eval-when (:load-toplevel :execute)
(%defvar ',var (unless (boundp ',var) ,val)
',valp ,doc ',docp
(sb!c:source-location)))))
(defmacro-mundanely defparameter (var val &optional (doc nil docp))
#!+sb-doc
"Define a parameter that is not normally changed by the program,
but that may be changed without causing an error. Declare the
variable special and sets its value to VAL, overwriting any
previous value. The third argument is an optional documentation
string for the parameter."
`(progn
(eval-when (:compile-toplevel)
(%compiler-defvar ',var))
(eval-when (:load-toplevel :execute)
(%defparameter ',var ,val ,doc ',docp (sb!c:source-location)))))
(defun %compiler-defvar (var)
(sb!xc:proclaim `(special ,var)))
#-sb-xc-host
(defun %defvar (var val valp doc docp source-location)
(%compiler-defvar var)
(when valp
(unless (boundp var)
(set var val)))
(when docp
(setf (fdocumentation var 'variable) doc))
(sb!c:with-source-location (source-location)
(setf (info :source-location :variable var) source-location))
var)
#-sb-xc-host
(defun %defparameter (var val doc docp source-location)
(%compiler-defvar var)
(set var val)
(when docp
(setf (fdocumentation var 'variable) doc))
(sb!c:with-source-location (source-location)
(setf (info :source-location :variable var) source-location))
var)
;;;; iteration constructs
;;; (These macros are defined in terms of a function FROB-DO-BODY which
;;; is also used by SB!INT:DO-ANONYMOUS. Since these macros should not
;;; be loaded on the cross-compilation host, but SB!INT:DO-ANONYMOUS
;;; and FROB-DO-BODY should be, these macros can't conveniently be in
;;; the same file as FROB-DO-BODY.)
(defmacro-mundanely do (varlist endlist &body body)
#!+sb-doc
"DO ({(Var [Init] [Step])}*) (Test Exit-Form*) Declaration* Form*
Iteration construct. Each Var is initialized in parallel to the value of the
specified Init form. On subsequent iterations, the Vars are assigned the
value of the Step form (if any) in parallel. The Test is evaluated before
each evaluation of the body Forms. When the Test is true, the Exit-Forms
are evaluated as a PROGN, with the result being the value of the DO. A block
named NIL is established around the entire expansion, allowing RETURN to be
used as an alternate exit mechanism."
(frob-do-body varlist endlist body 'let 'psetq 'do nil))
(defmacro-mundanely do* (varlist endlist &body body)
#!+sb-doc
"DO* ({(Var [Init] [Step])}*) (Test Exit-Form*) Declaration* Form*
Iteration construct. Each Var is initialized sequentially (like LET*) to the
value of the specified Init form. On subsequent iterations, the Vars are
sequentially assigned the value of the Step form (if any). The Test is
evaluated before each evaluation of the body Forms. When the Test is true,
the Exit-Forms are evaluated as a PROGN, with the result being the value
of the DO. A block named NIL is established around the entire expansion,
allowing RETURN to be used as an laternate exit mechanism."
(frob-do-body varlist endlist body 'let* 'setq 'do* nil))
;;; DOTIMES and DOLIST could be defined more concisely using
;;; destructuring macro lambda lists or DESTRUCTURING-BIND, but then
;;; it'd be tricky to use them before those things were defined.
;;; They're used enough times before destructuring mechanisms are
;;; defined that it looks as though it's worth just implementing them
;;; ASAP, at the cost of being unable to use the standard
;;; destructuring mechanisms.
(defmacro-mundanely dotimes ((var count &optional (result nil)) &body body)
(cond ((integerp count)
`(do ((,var 0 (1+ ,var)))
((>= ,var ,count) ,result)
(declare (type unsigned-byte ,var))
,@body))
(t
(let ((c (gensym "COUNT")))
`(do ((,var 0 (1+ ,var))
(,c ,count))
((>= ,var ,c) ,result)
(declare (type unsigned-byte ,var)
(type integer ,c))
,@body)))))
(defmacro-mundanely dolist ((var list &optional (result nil)) &body body &environment env)
;; We repeatedly bind the var instead of setting it so that we never
;; have to give the var an arbitrary value such as NIL (which might
;; conflict with a declaration). If there is a result form, we
;; introduce a gratuitous binding of the variable to NIL without the
;; declarations, then evaluate the result form in that
;; environment. We spuriously reference the gratuitous variable,
;; since we don't want to use IGNORABLE on what might be a special
;; var.
(multiple-value-bind (forms decls) (parse-body body :doc-string-allowed nil)
(let* ((n-list (gensym "N-LIST"))
(start (gensym "START")))
(multiple-value-bind (clist members clist-ok)
(cond ((sb!xc:constantp list env)
(let ((value (constant-form-value list env)))
(multiple-value-bind (all dot) (list-members value :max-length 20)
(when (eql dot t)
;; Full warning is too much: the user may terminate the loop
;; early enough. Contents are still right, though.
(style-warn "Dotted list ~S in DOLIST." value))
(if (eql dot :maybe)
(values value nil nil)
(values value all t)))))
((and (consp list) (eq 'list (car list))
(every (lambda (arg) (sb!xc:constantp arg env)) (cdr list)))
(let ((values (mapcar (lambda (arg) (constant-form-value arg env)) (cdr list))))
(values values values t)))
(t
(values nil nil nil)))
`(block nil
(let ((,n-list ,(if clist-ok (list 'quote clist) list)))
(tagbody
,start
(unless (endp ,n-list)
(let ((,var ,(if clist-ok
`(truly-the (member ,@members) (car ,n-list))
`(car ,n-list))))
,@decls
(setq ,n-list (cdr ,n-list))
(tagbody ,@forms))
(go ,start))))
,(if result
`(let ((,var nil))
;; Filter out TYPE declarations (VAR gets bound to NIL,
;; and might have a conflicting type declaration) and
;; IGNORE (VAR might be ignored in the loop body, but
;; it's used in the result form).
,@(filter-dolist-declarations decls)
,var
,result)
nil))))))
;;;; conditions, handlers, restarts
;;; KLUDGE: we PROCLAIM these special here so that we can use restart
;;; macros in the compiler before the DEFVARs are compiled.
(sb!xc:proclaim
'(special *handler-clusters* *restart-clusters* *condition-restarts*))
(defmacro-mundanely with-condition-restarts
(condition-form restarts-form &body body)
#!+sb-doc
"Evaluates the BODY in a dynamic environment where the restarts in the list
RESTARTS-FORM are associated with the condition returned by CONDITION-FORM.
This allows FIND-RESTART, etc., to recognize restarts that are not related
to the error currently being debugged. See also RESTART-CASE."
(let ((n-cond (gensym)))
`(let ((*condition-restarts*
(cons (let ((,n-cond ,condition-form))
(cons ,n-cond
(append ,restarts-form
(cdr (assoc ,n-cond *condition-restarts*)))))
*condition-restarts*)))
,@body)))
(defmacro-mundanely restart-bind (bindings &body forms)
#!+sb-doc
"Executes forms in a dynamic context where the given restart bindings are
in effect. Users probably want to use RESTART-CASE. When clauses contain
the same restart name, FIND-RESTART will find the first such clause."
`(let ((*restart-clusters*
(cons (list
,@(mapcar (lambda (binding)
(unless (or (car binding)
(member :report-function
binding
:test #'eq))
(warn "Unnamed restart does not have a ~
report function: ~S"
binding))
`(make-restart :name ',(car binding)
:function ,(cadr binding)
,@(cddr binding)))
bindings))
*restart-clusters*)))
,@forms))
;;; Wrap the RESTART-CASE expression in a WITH-CONDITION-RESTARTS if
;;; appropriate. Gross, but it's what the book seems to say...
(defun munge-restart-case-expression (expression env)
(let ((exp (%macroexpand expression env)))
(if (consp exp)
(let* ((name (car exp))
(args (if (eq name 'cerror) (cddr exp) (cdr exp))))
(if (member name '(signal error cerror warn))
(once-only ((n-cond `(coerce-to-condition
,(first args)
(list ,@(rest args))
',(case name
(warn 'simple-warning)
(signal 'simple-condition)
(t 'simple-error))
',name)))
`(with-condition-restarts
,n-cond
(car *restart-clusters*)
,(if (eq name 'cerror)
`(cerror ,(second exp) ,n-cond)
`(,name ,n-cond))))
expression))
expression)))
(defmacro-mundanely restart-case (expression &body clauses &environment env)
#!+sb-doc
"(RESTART-CASE form {(case-name arg-list {keyword value}* body)}*)
The form is evaluated in a dynamic context where the clauses have
special meanings as points to which control may be transferred (see
INVOKE-RESTART). When clauses contain the same case-name,
FIND-RESTART will find the first such clause. If form is a call to
SIGNAL, ERROR, CERROR or WARN (or macroexpands into such) then the
signalled condition will be associated with the new restarts."
;; PARSE-CLAUSE (which uses PARSE-KEYWORDS-AND-BODY) is used to
;; parse all clauses into lists of the form
;;
;; (NAME TAG KEYWORDS LAMBDA-LIST BODY)
;;
;; where KEYWORDS are suitable keywords for use in HANDLER-BIND
;; bindings. These lists are then passed to
;; * MAKE-BINDING which generates bindings for the respective NAME
;; for HANDLER-BIND
;; * MAKE-APPLY-AND-RETURN which generates TAGBODY entries executing
;; the respective BODY.
(let ((block-tag (sb!xc:gensym "BLOCK"))
(temp-var (gensym)))
(labels ((parse-keywords-and-body (keywords-and-body)
(do ((form keywords-and-body (cddr form))
(result '())) (nil)
(destructuring-bind (&optional key (arg nil argp) &rest rest)
form
(declare (ignore rest))
(setq result
(append
(cond
((and (eq key :report) argp)
(list :report-function
(if (stringp arg)
`#'(lambda (stream)
(write-string ,arg stream))
`#',arg)))
((and (eq key :interactive) argp)
(list :interactive-function `#',arg))
((and (eq key :test) argp)
(list :test-function `#',arg))
(t
(return (values result form))))
result)))))
(parse-clause (clause)
(unless (and (listp clause ) (>= (length clause) 2)
(listp (second clause)))
(error "ill-formed ~S clause, no lambda-list:~% ~S"
'restart-case clause))
(destructuring-bind (name lambda-list &body body) clause
(multiple-value-bind (keywords body)
(parse-keywords-and-body body)
(list name (sb!xc:gensym "TAG") keywords lambda-list body))))
(make-binding (clause-data)
(destructuring-bind (name tag keywords &rest rest) clause-data
(declare (ignore rest))
`(,name #'(lambda (&rest temp)
(setq ,temp-var temp)
(go ,tag))
,@keywords)))
(make-apply-and-return (clause-data)
(destructuring-bind (name tag keywords lambda-list body) clause-data
(declare (ignore name keywords))
`(,tag (return-from ,block-tag
(apply (lambda ,lambda-list ,@body) ,temp-var))))))
(let ((clauses-data (mapcar #'parse-clause clauses)))
`(block ,block-tag
(let ((,temp-var nil))
(declare (ignorable ,temp-var))
(tagbody
(restart-bind
,(mapcar #'make-binding clauses-data)
(return-from ,block-tag
,(munge-restart-case-expression expression env)))
,@(mapcan #'make-apply-and-return clauses-data))))))))
(defmacro-mundanely with-simple-restart ((restart-name format-string
&rest format-arguments)
&body forms)
#!+sb-doc
"(WITH-SIMPLE-RESTART (restart-name format-string format-arguments)
body)
If restart-name is not invoked, then all values returned by forms are
returned. If control is transferred to this restart, it immediately
returns the values NIL and T."
`(restart-case
;; If there's just one body form, then don't use PROGN. This allows
;; RESTART-CASE to "see" calls to ERROR, etc.
,(if (= (length forms) 1) (car forms) `(progn ,@forms))
(,restart-name ()
:report (lambda (stream)
(format stream ,format-string ,@format-arguments))
(values nil t))))
(defmacro-mundanely %handler-bind (bindings form)
(let ((member-if (member-if (lambda (x)
(not (proper-list-of-length-p x 2)))
bindings)))
(when member-if
(error "ill-formed handler binding: ~S" (first member-if))))
(let* ((local-funs nil)
(mapped-bindings (mapcar (lambda (binding)
(destructuring-bind (type handler) binding
(let ((lambda-form handler))
(if (and (consp handler)
(or (eq 'lambda (car handler))
(and (eq 'function (car handler))
(consp (cdr handler))
(let ((x (second handler)))
(and (consp x)
(eq 'lambda (car x))
(setf lambda-form x))))))
(let ((name (sb!xc:gensym "LAMBDA")))
(push `(,name ,@(cdr lambda-form)) local-funs)
(list type `(function ,name)))
binding))))
bindings)))
`(dx-flet (,@(reverse local-funs))
(let ((*handler-clusters*
(cons (list ,@(mapcar (lambda (x) `(cons ',(car x) ,(cadr x)))
mapped-bindings))
*handler-clusters*)))
#!+stack-allocatable-fixed-objects
(declare (truly-dynamic-extent *handler-clusters*))
(progn ,form)))))
(defmacro-mundanely handler-bind (bindings &body forms)
#!+sb-doc
"(HANDLER-BIND ( {(type handler)}* ) body)
Executes body in a dynamic context where the given handler bindings are in
effect. Each handler must take the condition being signalled as an argument.
The bindings are searched first to last in the event of a signalled
condition."
`(%handler-bind ,bindings
#!-x86 (progn ,@forms)
;; Need to catch FP errors here!
#!+x86 (multiple-value-prog1 (progn ,@forms) (float-wait))))
(defmacro-mundanely handler-case (form &rest cases)
"(HANDLER-CASE form { (type ([var]) body) }* )
Execute FORM in a context with handlers established for the condition types. A
peculiar property allows type to be :NO-ERROR. If such a clause occurs, and
form returns normally, all its values are passed to this clause as if by
MULTIPLE-VALUE-CALL. The :NO-ERROR clause accepts more than one var
specification."
(let ((no-error-clause (assoc ':no-error cases)))
(if no-error-clause
(let ((normal-return (make-symbol "normal-return"))
(error-return (make-symbol "error-return")))
`(block ,error-return
(multiple-value-call (lambda ,@(cdr no-error-clause))
(block ,normal-return
(return-from ,error-return
(handler-case (return-from ,normal-return ,form)
,@(remove no-error-clause cases)))))))
(let* ((local-funs nil)
(annotated-cases
(mapcar (lambda (case)
(with-unique-names (tag fun)
(destructuring-bind (type ll &body body) case
(push `(,fun ,ll ,@body) local-funs)
(list tag type ll fun))))
cases)))
(with-unique-names (block cell form-fun)
`(dx-flet ((,form-fun ()
#!-x86 ,form
;; Need to catch FP errors here!
#!+x86 (multiple-value-prog1 ,form (float-wait)))
,@(reverse local-funs))
(declare (optimize (sb!c::check-tag-existence 0)))
(block ,block
;; KLUDGE: We use a dx CONS cell instead of just assigning to
;; the variable directly, so that we can stack allocate
;; robustly: dx value cells don't work quite right, and it is
;; possible to construct user code that should loop
;; indefinitely, but instead eats up some stack each time
;; around.
(dx-let ((,cell (cons :condition nil)))
(declare (ignorable ,cell))
(tagbody
(%handler-bind
,(mapcar (lambda (annotated-case)
(destructuring-bind (tag type ll fun-name) annotated-case
(declare (ignore fun-name))
(list type
`(lambda (temp)
,(if ll
`(setf (cdr ,cell) temp)
'(declare (ignore temp)))
(go ,tag)))))
annotated-cases)
(return-from ,block (,form-fun)))
,@(mapcan
(lambda (annotated-case)
(destructuring-bind (tag type ll fun-name) annotated-case
(declare (ignore type))
(list tag
`(return-from ,block
,(if ll
`(,fun-name (cdr ,cell))
`(,fun-name))))))
annotated-cases))))))))))
;;;; miscellaneous
(defmacro-mundanely return (&optional (value nil))
`(return-from nil ,value))
(defmacro-mundanely psetq (&rest pairs)
#!+sb-doc
"PSETQ {var value}*
Set the variables to the values, like SETQ, except that assignments
happen in parallel, i.e. no assignments take place until all the
forms have been evaluated."
;; Given the possibility of symbol-macros, we delegate to PSETF
;; which knows how to deal with them, after checking that syntax is
;; compatible with PSETQ.
(do ((pair pairs (cddr pair)))
((endp pair) `(psetf ,@pairs))
(unless (symbolp (car pair))
(error 'simple-program-error
:format-control "variable ~S in PSETQ is not a SYMBOL"
:format-arguments (list (car pair))))))
(defmacro-mundanely lambda (&whole whole args &body body)
(declare (ignore args body))
`#',whole)
(defmacro-mundanely named-lambda (&whole whole name args &body body)
(declare (ignore name args body))
`#',whole)
(defmacro-mundanely lambda-with-lexenv (&whole whole
declarations macros symbol-macros
&body body)
(declare (ignore declarations macros symbol-macros body))
`#',whole)
;;; this eliminates a whole bundle of unknown function STYLE-WARNINGs
;;; when cross-compiling. It's not critical for behaviour, but is
;;; aesthetically pleasing, except inasmuch as there's this list of
;;; magic functions here. -- CSR, 2003-04-01
#+sb-xc-host
(sb!xc:proclaim '(ftype (function * *)
;; functions appearing in fundamental defining
;; macro expansions:
%compiler-deftype
%compiler-defvar
%defun
%defsetf
%defparameter
%defvar
sb!c:%compiler-defun
sb!c::%define-symbol-macro
sb!c::%defconstant
sb!c::%define-compiler-macro
sb!c::%defmacro
sb!kernel::%compiler-defstruct
sb!kernel::%compiler-define-condition
sb!kernel::%defstruct
sb!kernel::%define-condition
;; miscellaneous functions commonly appearing
;; as a result of macro expansions or compiler
;; transformations:
sb!int:find-undeleted-package-or-lose ; IN-PACKAGE
sb!kernel::arg-count-error ; PARSE-DEFMACRO
))