[18a22e]: src / runtime / x86-darwin-os.c Maximize Restore History

Download this file

x86-darwin-os.c    654 lines (566 with data), 22.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
#ifdef LISP_FEATURE_SB_THREAD
#include <architecture/i386/table.h>
#include <i386/user_ldt.h>
#include <mach/mach_init.h>
#endif
#include "thread.h"
#include "validate.h"
#include "runtime.h"
#include "interrupt.h"
#include "x86-darwin-os.h"
#include "genesis/fdefn.h"
#include <mach/mach.h>
#include <mach/mach_error.h>
#include <mach/mach_types.h>
#include <mach/sync_policy.h>
#include <mach/vm_region.h>
#include <mach/machine/thread_state.h>
#include <mach/machine/thread_status.h>
#include <sys/_types.h>
#include <sys/ucontext.h>
#include <pthread.h>
#include <assert.h>
#include <stdlib.h>
#ifdef LISP_FEATURE_SB_THREAD
pthread_mutex_t modify_ldt_lock = PTHREAD_MUTEX_INITIALIZER;
void set_data_desc_size(data_desc_t* desc, unsigned long size)
{
desc->limit00 = (size - 1) & 0xffff;
desc->limit16 = ((size - 1) >> 16) &0xf;
}
void set_data_desc_addr(data_desc_t* desc, void* addr)
{
desc->base00 = (unsigned int)addr & 0xffff;
desc->base16 = ((unsigned int)addr & 0xff0000) >> 16;
desc->base24 = ((unsigned int)addr & 0xff000000) >> 24;
}
#endif
#ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
kern_return_t mach_thread_init(mach_port_t thread_exception_port);
#endif
int arch_os_thread_init(struct thread *thread) {
#ifdef LISP_FEATURE_SB_THREAD
int n;
sel_t sel;
data_desc_t ldt_entry = { 0, 0, 0, DESC_DATA_WRITE,
3, 1, 0, DESC_DATA_32B, DESC_GRAN_BYTE, 0 };
set_data_desc_addr(&ldt_entry, thread);
set_data_desc_size(&ldt_entry, dynamic_values_bytes);
thread_mutex_lock(&modify_ldt_lock);
n = i386_set_ldt(LDT_AUTO_ALLOC, (union ldt_entry*) &ldt_entry, 1);
if (n < 0) {
perror("i386_set_ldt");
lose("unexpected i386_set_ldt(..) failure\n");
}
thread_mutex_unlock(&modify_ldt_lock);
FSHOW_SIGNAL((stderr, "/ TLS: Allocated LDT %x\n", n));
sel.index = n;
sel.rpl = USER_PRIV;
sel.ti = SEL_LDT;
__asm__ __volatile__ ("mov %0, %%fs" : : "r"(sel));
thread->tls_cookie=n;
pthread_setspecific(specials,thread);
#endif
#ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
mach_thread_init(THREAD_STRUCT_TO_EXCEPTION_PORT(thread));
#endif
#ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
stack_t sigstack;
/* Signal handlers are run on the control stack, so if it is exhausted
* we had better use an alternate stack for whatever signal tells us
* we've exhausted it */
sigstack.ss_sp=((void *) thread)+dynamic_values_bytes;
sigstack.ss_flags=0;
sigstack.ss_size = 32*SIGSTKSZ;
sigaltstack(&sigstack,0);
#endif
return 1; /* success */
}
int arch_os_thread_cleanup(struct thread *thread) {
#if defined(LISP_FEATURE_SB_THREAD)
int n = thread->tls_cookie;
/* Set the %%fs register back to 0 and free the ldt by setting it
* to NULL.
*/
FSHOW_SIGNAL((stderr, "/ TLS: Freeing LDT %x\n", n));
__asm__ __volatile__ ("mov %0, %%fs" : : "r"(0));
thread_mutex_lock(&modify_ldt_lock);
i386_set_ldt(n, NULL, 1);
thread_mutex_unlock(&modify_ldt_lock);
#endif
return 1; /* success */
}
#ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
void sigill_handler(int signal, siginfo_t *siginfo, void *void_context);
void sigtrap_handler(int signal, siginfo_t *siginfo, void *void_context);
void memory_fault_handler(int signal, siginfo_t *siginfo, void *void_context);
/* exc_server handles mach exception messages from the kernel and
* calls catch exception raise. We use the system-provided
* mach_msg_server, which, I assume, calls exc_server in a loop.
*
*/
extern boolean_t exc_server();
/* This executes in the faulting thread as part of the signal
* emulation. It is passed a context with the uc_mcontext field
* pointing to a valid block of memory. */
void build_fake_signal_context(os_context_t *context,
x86_thread_state32_t *thread_state,
x86_float_state32_t *float_state) {
pthread_sigmask(0, NULL, &context->uc_sigmask);
context->uc_mcontext->SS = *thread_state;
context->uc_mcontext->FS = *float_state;
}
/* This executes in the faulting thread as part of the signal
* emulation. It is effectively the inverse operation from above. */
void update_thread_state_from_context(x86_thread_state32_t *thread_state,
x86_float_state32_t *float_state,
os_context_t *context) {
*thread_state = context->uc_mcontext->SS;
*float_state = context->uc_mcontext->FS;
pthread_sigmask(SIG_SETMASK, &context->uc_sigmask, NULL);
}
/* Modify a context to push new data on its stack. */
void push_context(u32 data, x86_thread_state32_t *thread_state)
{
u32 *stack_pointer;
stack_pointer = (u32*) thread_state->ESP;
*(--stack_pointer) = data;
thread_state->ESP = (unsigned int) stack_pointer;
}
void align_context_stack(x86_thread_state32_t *thread_state)
{
/* 16byte align the stack (provided that the stack is, as it
* should be, 4byte aligned. */
while (thread_state->ESP & 15) push_context(0, thread_state);
}
/* Stack allocation starts with a context that has a mod-4 ESP value
* and needs to leave a context with a mod-16 ESP that will restore
* the old ESP value and other register state when activated. The
* first part of this is the recovery trampoline, which loads ESP from
* EBP, pops EBP, and returns. */
asm("_stack_allocation_recover: movl %ebp, %esp; popl %ebp; ret;");
void open_stack_allocation(x86_thread_state32_t *thread_state)
{
void stack_allocation_recover(void);
push_context(thread_state->EIP, thread_state);
push_context(thread_state->EBP, thread_state);
thread_state->EBP = thread_state->ESP;
thread_state->EIP = (unsigned int) stack_allocation_recover;
align_context_stack(thread_state);
}
/* Stack allocation of data starts with a context with a mod-16 ESP
* value and reserves some space on it by manipulating the ESP
* register. */
void *stack_allocate(x86_thread_state32_t *thread_state, size_t size)
{
/* round up size to 16byte multiple */
size = (size + 15) & -16;
thread_state->ESP = ((u32)thread_state->ESP) - size;
return (void *)thread_state->ESP;
}
/* Arranging to invoke a C function is tricky, as we have to assume
* cdecl calling conventions (caller removes args) and x86/darwin
* alignment requirements. The simplest way to arrange this,
* actually, is to open a new stack allocation.
* WARNING!!! THIS DOES NOT PRESERVE REGISTERS! */
void call_c_function_in_context(x86_thread_state32_t *thread_state,
void *function,
int nargs,
...)
{
va_list ap;
int i;
u32 *stack_pointer;
/* Set up to restore stack on exit. */
open_stack_allocation(thread_state);
/* Have to keep stack 16byte aligned on x86/darwin. */
for (i = (3 & -nargs); i; i--) {
push_context(0, thread_state);
}
thread_state->ESP = ((u32)thread_state->ESP) - nargs * 4;
stack_pointer = (u32 *)thread_state->ESP;
va_start(ap, nargs);
for (i = 0; i < nargs; i++) {
//push_context(va_arg(ap, u32), thread_state);
stack_pointer[i] = va_arg(ap, u32);
}
va_end(ap);
push_context(thread_state->EIP, thread_state);
thread_state->EIP = (unsigned int) function;
}
void signal_emulation_wrapper(x86_thread_state32_t *thread_state,
x86_float_state32_t *float_state,
int signal,
siginfo_t *siginfo,
void (*handler)(int, siginfo_t *, void *))
{
/* CLH: FIXME **NOTE: HACK ALERT!** Ideally, we would allocate
* context and regs on the stack as local variables, but this
* causes problems for the lisp debugger. When it walks the stack
* for a back trace, it sees the 1) address of the local variable
* on the stack and thinks that is a frame pointer to a lisp
* frame, and, 2) the address of the sap that we alloc'ed in
* dynamic space and thinks that is a return address, so it,
* heuristicly (and wrongly), chooses that this should be
* interpreted as a lisp frame instead of as a C frame.
* We can work around this in this case by os_validating the
* context (and regs just for symmetry).
*/
os_context_t *context;
#if MAC_OS_X_VERSION_10_5
struct __darwin_mcontext32 *regs;
#else
struct mcontext *regs;
#endif
context = (os_context_t*) os_validate(0, sizeof(os_context_t));
#if MAC_OS_X_VERSION_10_5
regs = (struct __darwin_mcontext32*) os_validate(0, sizeof(struct __darwin_mcontext32));
#else
regs = (struct mcontext*) os_validate(0, sizeof(struct mcontext));
#endif
context->uc_mcontext = regs;
/* when BSD signals are fired, they mask they signals in sa_mask
which always seem to be the blockable_sigset, for us, so we
need to:
1) save the current sigmask
2) block blockable signals
3) call the signal handler
4) restore the sigmask */
build_fake_signal_context(context, thread_state, float_state);
block_blockable_signals();
handler(signal, siginfo, context);
update_thread_state_from_context(thread_state, float_state, context);
os_invalidate((os_vm_address_t)context, sizeof(os_context_t));
#if MAC_OS_X_VERSION_10_5
os_invalidate((os_vm_address_t)regs, sizeof(struct __darwin_mcontext32));
#else
os_invalidate((os_vm_address_t)regs, sizeof(struct mcontext));
#endif
/* Trap to restore the signal context. */
asm volatile ("movl %0, %%eax; movl %1, %%ebx; .long 0xffff0b0f"
: : "r" (thread_state), "r" (float_state));
}
/* Convenience wrapper for the above */
void call_handler_on_thread(mach_port_t thread,
x86_thread_state32_t *thread_state,
int signal,
siginfo_t *siginfo,
void (*handler)(int, siginfo_t *, void *))
{
x86_thread_state32_t new_state;
x86_thread_state32_t *save_thread_state;
x86_float_state32_t *save_float_state;
mach_msg_type_number_t state_count;
siginfo_t *save_siginfo;
kern_return_t ret;
/* Initialize the new state */
new_state = *thread_state;
open_stack_allocation(&new_state);
/* Save old state */
save_thread_state = (x86_thread_state32_t *)stack_allocate(&new_state, sizeof(*save_thread_state));
*save_thread_state = *thread_state;
/* Save float state */
save_float_state = (x86_float_state32_t *)stack_allocate(&new_state, sizeof(*save_float_state));
state_count = x86_FLOAT_STATE32_COUNT;
if ((ret = thread_get_state(thread,
x86_FLOAT_STATE32,
(thread_state_t)save_float_state,
&state_count)) != KERN_SUCCESS)
lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret);
/* Set up siginfo */
save_siginfo = stack_allocate(&new_state, sizeof(*siginfo));
if (siginfo == NULL)
save_siginfo = siginfo;
else
*save_siginfo = *siginfo;
/* Prepare to call */
call_c_function_in_context(&new_state,
signal_emulation_wrapper,
5,
save_thread_state,
save_float_state,
signal,
save_siginfo,
handler);
/* Update the thread state */
state_count = x86_THREAD_STATE32_COUNT;
if ((ret = thread_set_state(thread,
x86_THREAD_STATE32,
(thread_state_t)&new_state,
state_count)) != KERN_SUCCESS)
lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret);
}
#if defined DUMP_CONTEXT
void dump_context(x86_thread_state32_t *thread_state)
{
int i;
u32 *stack_pointer;
printf("eax: %08lx ecx: %08lx edx: %08lx ebx: %08lx\n",
thread_state->EAX, thread_state->ECX, thread_state->EDX, thread_state->EAX);
printf("esp: %08lx ebp: %08lx esi: %08lx edi: %08lx\n",
thread_state->ESP, thread_state->EBP, thread_state->ESI, thread_state->EDI);
printf("eip: %08lx eflags: %08lx\n",
thread_state->EIP, thread_state->EFLAGS);
printf("cs: %04hx ds: %04hx es: %04hx "
"ss: %04hx fs: %04hx gs: %04hx\n",
thread_state->CS,
thread_state->DS,
thread_state->ES,
thread_state->SS,
thread_state->FS,
thread_state->GS);
stack_pointer = (u32 *)thread_state->ESP;
for (i = 0; i < 48; i+=4) {
printf("%08x: %08x %08x %08x %08x\n",
thread_state->ESP + (i * 4),
stack_pointer[i],
stack_pointer[i+1],
stack_pointer[i+2],
stack_pointer[i+3]);
}
}
#endif
void
control_stack_exhausted_handler(int signal, siginfo_t *siginfo, void *void_context) {
os_context_t *context = arch_os_get_context(&void_context);
arrange_return_to_lisp_function
(context, SymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
}
void
undefined_alien_handler(int signal, siginfo_t *siginfo, void *void_context) {
os_context_t *context = arch_os_get_context(&void_context);
arrange_return_to_lisp_function
(context, SymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
}
kern_return_t
catch_exception_raise(mach_port_t exception_port,
mach_port_t thread,
mach_port_t task,
exception_type_t exception,
exception_data_t code_vector,
mach_msg_type_number_t code_count)
{
struct thread *th = (struct thread*) exception_port;
x86_thread_state32_t thread_state;
mach_msg_type_number_t state_count;
vm_address_t region_addr;
vm_size_t region_size;
vm_region_basic_info_data_t region_info;
mach_msg_type_number_t info_count;
mach_port_t region_name;
void *addr = NULL;
int signal = 0;
void (*handler)(int, siginfo_t *, void *) = NULL;
siginfo_t siginfo;
kern_return_t ret;
/* Get state and info */
state_count = x86_THREAD_STATE32_COUNT;
if ((ret = thread_get_state(thread,
x86_THREAD_STATE32,
(thread_state_t)&thread_state,
&state_count)) != KERN_SUCCESS)
lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret);
switch (exception) {
case EXC_BAD_ACCESS:
signal = SIGBUS;
/* Check if write protection fault */
if ((code_vector[0] & OS_VM_PROT_ALL) == 0) {
ret = KERN_INVALID_RIGHT;
break;
}
addr = (void*)code_vector[1];
/* Undefined alien */
if (os_trunc_to_page(addr) == undefined_alien_address) {
handler = undefined_alien_handler;
break;
}
/* At stack guard */
if (os_trunc_to_page(addr) == CONTROL_STACK_GUARD_PAGE(th)) {
protect_control_stack_guard_page_thread(0, th);
protect_control_stack_return_guard_page_thread(1, th);
handler = control_stack_exhausted_handler;
break;
}
/* Return from stack guard */
if (os_trunc_to_page(addr) == CONTROL_STACK_RETURN_GUARD_PAGE(th)) {
protect_control_stack_guard_page_thread(1, th);
protect_control_stack_return_guard_page_thread(0, th);
break;
}
/* Get vm_region info */
region_addr = (vm_address_t)code_vector[1];
info_count = VM_REGION_BASIC_INFO_COUNT;
if ((ret = vm_region(mach_task_self(),
&region_addr,
&region_size,
VM_REGION_BASIC_INFO,
(vm_region_info_t)&region_info,
&info_count,
&region_name)))
lose("vm_region (VM_REGION_BASIC_INFO) failed failed %d\n", ret);
/* Check if still protected */
if ((region_info.protection & OS_VM_PROT_ALL) == 0) {
/* KLUDGE:
* If two threads fault on the same page, the protection
* is cleared as the first thread runs memory_fault_handler.
* Grep for "not marked as write-protected" in gencgc.c
*/
ret = KERN_SUCCESS;
break;
}
/* Regular memory fault */
handler = memory_fault_handler;
break;
case EXC_BAD_INSTRUCTION:
signal = SIGTRAP;
/* Check if illegal instruction trap */
if (code_vector[0] != EXC_I386_INVOP) {
ret = KERN_INVALID_RIGHT;
break;
}
/* Check if UD2 instruction */
if (*(unsigned short *)thread_state.EIP != 0x0b0f) {
/* KLUDGE: There are two ways we could get here:
* 1) We're executing data and we've hit some truly
* illegal opcode, of which there are a few, see
* Intel 64 and IA-32 Architectures
* Sofware Developer's Manual
* Volume 3A page 5-34)
* 2) The kernel started an unrelated signal handler
* before we got a chance to run. The context that
* caused the exception is saved in a stack frame
* somewhere down below.
* In either case we rely on the exception to retrigger,
* eventually bailing out if we're spinning on case 2).
*/
static mach_port_t last_thread;
static unsigned int last_eip;
if (last_thread == thread && last_eip == thread_state.EIP)
ret = KERN_INVALID_RIGHT;
else
ret = KERN_SUCCESS;
last_thread = thread;
last_eip = thread_state.EIP;
break;
}
/* Skip the trap code */
thread_state.EIP += 2;
/* Return from handler? */
if (*(unsigned short *)thread_state.EIP == 0xffff) {
if ((ret = thread_set_state(thread,
x86_THREAD_STATE32,
(thread_state_t)thread_state.EAX,
x86_THREAD_STATE32_COUNT)) != KERN_SUCCESS)
lose("thread_set_state (x86_THREAD_STATE32) failed %d\n", ret);
if ((ret = thread_set_state(thread,
x86_FLOAT_STATE32,
(thread_state_t)thread_state.EBX,
x86_FLOAT_STATE32_COUNT)) != KERN_SUCCESS)
lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret);
break;
}
/* Trap call */
handler = sigtrap_handler;
break;
default:
ret = KERN_INVALID_RIGHT;
}
/* Call handler */
if (handler != 0) {
siginfo.si_signo = signal;
siginfo.si_addr = addr;
call_handler_on_thread(thread, &thread_state, signal, &siginfo, handler);
}
return ret;
}
void *
mach_exception_handler(void *port)
{
mach_msg_server(exc_server, 2048, (mach_port_t) port, 0);
/* mach_msg_server should never return, but it should dispatch mach
* exceptions to our catch_exception_raise function
*/
abort();
}
#endif
#ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
/* Sets up the thread that will listen for mach exceptions. note that
the exception handlers will be run on this thread. This is
different from the BSD-style signal handling situation in which the
signal handlers run in the relevant thread directly. */
mach_port_t mach_exception_handler_port_set = MACH_PORT_NULL;
pthread_t
setup_mach_exception_handling_thread()
{
kern_return_t ret;
pthread_t mach_exception_handling_thread = NULL;
pthread_attr_t attr;
/* allocate a mach_port for this process */
ret = mach_port_allocate(mach_task_self(),
MACH_PORT_RIGHT_PORT_SET,
&mach_exception_handler_port_set);
/* create the thread that will receive the mach exceptions */
FSHOW((stderr, "Creating mach_exception_handler thread!\n"));
pthread_attr_init(&attr);
pthread_create(&mach_exception_handling_thread,
&attr,
mach_exception_handler,
(void*) mach_exception_handler_port_set);
pthread_attr_destroy(&attr);
return mach_exception_handling_thread;
}
/* tell the kernel that we want EXC_BAD_ACCESS exceptions sent to the
exception port (which is being listened to do by the mach
exception handling thread). */
kern_return_t
mach_thread_init(mach_port_t thread_exception_port)
{
kern_return_t ret;
/* allocate a named port for the thread */
FSHOW((stderr, "Allocating mach port %x\n", thread_exception_port));
ret = mach_port_allocate_name(mach_task_self(),
MACH_PORT_RIGHT_RECEIVE,
thread_exception_port);
if (ret) {
lose("mach_port_allocate_name failed with return_code %d\n", ret);
}
/* establish the right for the thread_exception_port to send messages */
ret = mach_port_insert_right(mach_task_self(),
thread_exception_port,
thread_exception_port,
MACH_MSG_TYPE_MAKE_SEND);
if (ret) {
lose("mach_port_insert_right failed with return_code %d\n", ret);
}
ret = thread_set_exception_ports(mach_thread_self(),
EXC_MASK_BAD_ACCESS | EXC_MASK_BAD_INSTRUCTION,
thread_exception_port,
EXCEPTION_DEFAULT,
THREAD_STATE_NONE);
if (ret) {
lose("thread_set_exception_port failed with return_code %d\n", ret);
}
ret = mach_port_move_member(mach_task_self(),
thread_exception_port,
mach_exception_handler_port_set);
if (ret) {
lose("mach_port_ failed with return_code %d\n", ret);
}
return ret;
}
void
setup_mach_exceptions() {
setup_mach_exception_handling_thread();
mach_thread_init(THREAD_STRUCT_TO_EXCEPTION_PORT(all_threads));
}
pid_t
mach_fork() {
pid_t pid = fork();
if (pid == 0) {
setup_mach_exceptions();
return pid;
} else {
return pid;
}
}
#endif