Learn how easy it is to sync an existing GitHub or Google Code repo to a SourceForge project! See Demo

Close

Commit [797f69] default Maximize Restore History

maint: move all files one level down after splitting miscellaneous into a

separate hg repo together with the history from the old combinatorics and
physical-constants packages (these were once packages that have been merged
into the miscellaneous package).

Carnë Draug Carnë Draug 2013-11-07

<< < 1 2 3 4 5 > >> (Page 3 of 5)
added src/cell2cell.cc
added src/.svnignore
added src/Makefile
added src/text_waitbar.cc
added src/partint.cc
added src/partint.h
added src/sample.cc
added inst/private/strsplit.m
added inst/zigzag.m
added inst/chebyshevpoly.m
added inst/clip.m
added inst/solvesudoku.m
added inst/csv2latex.m
added inst/legendrepoly.m
added inst/publish.m
added inst/units.m
removed miscellaneous/PKG_ADD
removed miscellaneous/DESCRIPTION
copied miscellaneous/COPYING -> inst/physical_constant.m
copied miscellaneous/NEWS -> inst/rolldices.m
src/cell2cell.cc Diff Switch to side-by-side view
Loading...
src/.svnignore Diff Switch to side-by-side view
Loading...
src/Makefile Diff Switch to side-by-side view
Loading...
src/text_waitbar.cc Diff Switch to side-by-side view
Loading...
src/partint.cc Diff Switch to side-by-side view
Loading...
src/partint.h Diff Switch to side-by-side view
Loading...
src/sample.cc Diff Switch to side-by-side view
Loading...
inst/private/strsplit.m Diff Switch to side-by-side view
Loading...
inst/zigzag.m Diff Switch to side-by-side view
Loading...
inst/chebyshevpoly.m Diff Switch to side-by-side view
Loading...
inst/clip.m Diff Switch to side-by-side view
Loading...
inst/solvesudoku.m Diff Switch to side-by-side view
Loading...
inst/csv2latex.m Diff Switch to side-by-side view
Loading...
inst/legendrepoly.m Diff Switch to side-by-side view
Loading...
inst/publish.m Diff Switch to side-by-side view
Loading...
inst/units.m Diff Switch to side-by-side view
Loading...
miscellaneous/PKG_ADD
File was removed.
miscellaneous/DESCRIPTION
File was removed.
miscellaneous/COPYING to inst/physical_constant.m
--- a/miscellaneous/COPYING
+++ b/inst/physical_constant.m
@@ -1,674 +1,2078 @@
-                    GNU GENERAL PUBLIC LICENSE
-                       Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
-                            Preamble
-
-  The GNU General Public License is a free, copyleft license for
-software and other kinds of works.
-
-  The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works.  By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program--to make sure it remains free
-software for all its users.  We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors.  You can apply it to
-your programs, too.
-
-  When we speak of free software, we are referring to freedom, not
-price.  Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
-  To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights.  Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
-  For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received.  You must make sure that they, too, receive
-or can get the source code.  And you must show them these terms so they
-know their rights.
-
-  Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
-  For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software.  For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
-  Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so.  This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software.  The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable.  Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products.  If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
-  Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary.  To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
-  The precise terms and conditions for copying, distribution and
-modification follow.
-
-                       TERMS AND CONDITIONS
-
-  0. Definitions.
-
-  "This License" refers to version 3 of the GNU General Public License.
-
-  "Copyright" also means copyright-like laws that apply to other kinds of
-works, such as semiconductor masks.
-
-  "The Program" refers to any copyrightable work licensed under this
-License.  Each licensee is addressed as "you".  "Licensees" and
-"recipients" may be individuals or organizations.
-
-  To "modify" a work means to copy from or adapt all or part of the work
-in a fashion requiring copyright permission, other than the making of an
-exact copy.  The resulting work is called a "modified version" of the
-earlier work or a work "based on" the earlier work.
-
-  A "covered work" means either the unmodified Program or a work based
-on the Program.
-
-  To "propagate" a work means to do anything with it that, without
-permission, would make you directly or secondarily liable for
-infringement under applicable copyright law, except executing it on a
-computer or modifying a private copy.  Propagation includes copying,
-distribution (with or without modification), making available to the
-public, and in some countries other activities as well.
-
-  To "convey" a work means any kind of propagation that enables other
-parties to make or receive copies.  Mere interaction with a user through
-a computer network, with no transfer of a copy, is not conveying.
-
-  An interactive user interface displays "Appropriate Legal Notices"
-to the extent that it includes a convenient and prominently visible
-feature that (1) displays an appropriate copyright notice, and (2)
-tells the user that there is no warranty for the work (except to the
-extent that warranties are provided), that licensees may convey the
-work under this License, and how to view a copy of this License.  If
-the interface presents a list of user commands or options, such as a
-menu, a prominent item in the list meets this criterion.
-
-  1. Source Code.
-
-  The "source code" for a work means the preferred form of the work
-for making modifications to it.  "Object code" means any non-source
-form of a work.
-
-  A "Standard Interface" means an interface that either is an official
-standard defined by a recognized standards body, or, in the case of
-interfaces specified for a particular programming language, one that
-is widely used among developers working in that language.
-
-  The "System Libraries" of an executable work include anything, other
-than the work as a whole, that (a) is included in the normal form of
-packaging a Major Component, but which is not part of that Major
-Component, and (b) serves only to enable use of the work with that
-Major Component, or to implement a Standard Interface for which an
-implementation is available to the public in source code form.  A
-"Major Component", in this context, means a major essential component
-(kernel, window system, and so on) of the specific operating system
-(if any) on which the executable work runs, or a compiler used to
-produce the work, or an object code interpreter used to run it.
-
-  The "Corresponding Source" for a work in object code form means all
-the source code needed to generate, install, and (for an executable
-work) run the object code and to modify the work, including scripts to
-control those activities.  However, it does not include the work's
-System Libraries, or general-purpose tools or generally available free
-programs which are used unmodified in performing those activities but
-which are not part of the work.  For example, Corresponding Source
-includes interface definition files associated with source files for
-the work, and the source code for shared libraries and dynamically
-linked subprograms that the work is specifically designed to require,
-such as by intimate data communication or control flow between those
-subprograms and other parts of the work.
-
-  The Corresponding Source need not include anything that users
-can regenerate automatically from other parts of the Corresponding
-Source.
-
-  The Corresponding Source for a work in source code form is that
-same work.
-
-  2. Basic Permissions.
-
-  All rights granted under this License are granted for the term of
-copyright on the Program, and are irrevocable provided the stated
-conditions are met.  This License explicitly affirms your unlimited
-permission to run the unmodified Program.  The output from running a
-covered work is covered by this License only if the output, given its
-content, constitutes a covered work.  This License acknowledges your
-rights of fair use or other equivalent, as provided by copyright law.
-
-  You may make, run and propagate covered works that you do not
-convey, without conditions so long as your license otherwise remains
-in force.  You may convey covered works to others for the sole purpose
-of having them make modifications exclusively for you, or provide you
-with facilities for running those works, provided that you comply with
-the terms of this License in conveying all material for which you do
-not control copyright.  Those thus making or running the covered works
-for you must do so exclusively on your behalf, under your direction
-and control, on terms that prohibit them from making any copies of
-your copyrighted material outside their relationship with you.
-
-  Conveying under any other circumstances is permitted solely under
-the conditions stated below.  Sublicensing is not allowed; section 10
-makes it unnecessary.
-
-  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
-  No covered work shall be deemed part of an effective technological
-measure under any applicable law fulfilling obligations under article
-11 of the WIPO copyright treaty adopted on 20 December 1996, or
-similar laws prohibiting or restricting circumvention of such
-measures.
-
-  When you convey a covered work, you waive any legal power to forbid
-circumvention of technological measures to the extent such circumvention
-is effected by exercising rights under this License with respect to
-the covered work, and you disclaim any intention to limit operation or
-modification of the work as a means of enforcing, against the work's
-users, your or third parties' legal rights to forbid circumvention of
-technological measures.
-
-  4. Conveying Verbatim Copies.
-
-  You may convey verbatim copies of the Program's source code as you
-receive it, in any medium, provided that you conspicuously and
-appropriately publish on each copy an appropriate copyright notice;
-keep intact all notices stating that this License and any
-non-permissive terms added in accord with section 7 apply to the code;
-keep intact all notices of the absence of any warranty; and give all
-recipients a copy of this License along with the Program.
-
-  You may charge any price or no price for each copy that you convey,
-and you may offer support or warranty protection for a fee.
-
-  5. Conveying Modified Source Versions.
-
-  You may convey a work based on the Program, or the modifications to
-produce it from the Program, in the form of source code under the
-terms of section 4, provided that you also meet all of these conditions:
-
-    a) The work must carry prominent notices stating that you modified
-    it, and giving a relevant date.
-
-    b) The work must carry prominent notices stating that it is
-    released under this License and any conditions added under section
-    7.  This requirement modifies the requirement in section 4 to
-    "keep intact all notices".
-
-    c) You must license the entire work, as a whole, under this
-    License to anyone who comes into possession of a copy.  This
-    License will therefore apply, along with any applicable section 7
-    additional terms, to the whole of the work, and all its parts,
-    regardless of how they are packaged.  This License gives no
-    permission to license the work in any other way, but it does not
-    invalidate such permission if you have separately received it.
-
-    d) If the work has interactive user interfaces, each must display
-    Appropriate Legal Notices; however, if the Program has interactive
-    interfaces that do not display Appropriate Legal Notices, your
-    work need not make them do so.
-
-  A compilation of a covered work with other separate and independent
-works, which are not by their nature extensions of the covered work,
-and which are not combined with it such as to form a larger program,
-in or on a volume of a storage or distribution medium, is called an
-"aggregate" if the compilation and its resulting copyright are not
-used to limit the access or legal rights of the compilation's users
-beyond what the individual works permit.  Inclusion of a covered work
-in an aggregate does not cause this License to apply to the other
-parts of the aggregate.
-
-  6. Conveying Non-Source Forms.
-
-  You may convey a covered work in object code form under the terms
-of sections 4 and 5, provided that you also convey the
-machine-readable Corresponding Source under the terms of this License,
-in one of these ways:
-
-    a) Convey the object code in, or embodied in, a physical product
-    (including a physical distribution medium), accompanied by the
-    Corresponding Source fixed on a durable physical medium
-    customarily used for software interchange.
-
-    b) Convey the object code in, or embodied in, a physical product
-    (including a physical distribution medium), accompanied by a
-    written offer, valid for at least three years and valid for as
-    long as you offer spare parts or customer support for that product
-    model, to give anyone who possesses the object code either (1) a
-    copy of the Corresponding Source for all the software in the
-    product that is covered by this License, on a durable physical
-    medium customarily used for software interchange, for a price no
-    more than your reasonable cost of physically performing this
-    conveying of source, or (2) access to copy the
-    Corresponding Source from a network server at no charge.
-
-    c) Convey individual copies of the object code with a copy of the
-    written offer to provide the Corresponding Source.  This
-    alternative is allowed only occasionally and noncommercially, and
-    only if you received the object code with such an offer, in accord
-    with subsection 6b.
-
-    d) Convey the object code by offering access from a designated
-    place (gratis or for a charge), and offer equivalent access to the
-    Corresponding Source in the same way through the same place at no
-    further charge.  You need not require recipients to copy the
-    Corresponding Source along with the object code.  If the place to
-    copy the object code is a network server, the Corresponding Source
-    may be on a different server (operated by you or a third party)
-    that supports equivalent copying facilities, provided you maintain
-    clear directions next to the object code saying where to find the
-    Corresponding Source.  Regardless of what server hosts the
-    Corresponding Source, you remain obligated to ensure that it is
-    available for as long as needed to satisfy these requirements.
-
-    e) Convey the object code using peer-to-peer transmission, provided
-    you inform other peers where the object code and Corresponding
-    Source of the work are being offered to the general public at no
-    charge under subsection 6d.
-
-  A separable portion of the object code, whose source code is excluded
-from the Corresponding Source as a System Library, need not be
-included in conveying the object code work.
-
-  A "User Product" is either (1) a "consumer product", which means any
-tangible personal property which is normally used for personal, family,
-or household purposes, or (2) anything designed or sold for incorporation
-into a dwelling.  In determining whether a product is a consumer product,
-doubtful cases shall be resolved in favor of coverage.  For a particular
-product received by a particular user, "normally used" refers to a
-typical or common use of that class of product, regardless of the status
-of the particular user or of the way in which the particular user
-actually uses, or expects or is expected to use, the product.  A product
-is a consumer product regardless of whether the product has substantial
-commercial, industrial or non-consumer uses, unless such uses represent
-the only significant mode of use of the product.
-
-  "Installation Information" for a User Product means any methods,
-procedures, authorization keys, or other information required to install
-and execute modified versions of a covered work in that User Product from
-a modified version of its Corresponding Source.  The information must
-suffice to ensure that the continued functioning of the modified object
-code is in no case prevented or interfered with solely because
-modification has been made.
-
-  If you convey an object code work under this section in, or with, or
-specifically for use in, a User Product, and the conveying occurs as
-part of a transaction in which the right of possession and use of the
-User Product is transferred to the recipient in perpetuity or for a
-fixed term (regardless of how the transaction is characterized), the
-Corresponding Source conveyed under this section must be accompanied
-by the Installation Information.  But this requirement does not apply
-if neither you nor any third party retains the ability to install
-modified object code on the User Product (for example, the work has
-been installed in ROM).
-
-  The requirement to provide Installation Information does not include a
-requirement to continue to provide support service, warranty, or updates
-for a work that has been modified or installed by the recipient, or for
-the User Product in which it has been modified or installed.  Access to a
-network may be denied when the modification itself materially and
-adversely affects the operation of the network or violates the rules and
-protocols for communication across the network.
-
-  Corresponding Source conveyed, and Installation Information provided,
-in accord with this section must be in a format that is publicly
-documented (and with an implementation available to the public in
-source code form), and must require no special password or key for
-unpacking, reading or copying.
-
-  7. Additional Terms.
-
-  "Additional permissions" are terms that supplement the terms of this
-License by making exceptions from one or more of its conditions.
-Additional permissions that are applicable to the entire Program shall
-be treated as though they were included in this License, to the extent
-that they are valid under applicable law.  If additional permissions
-apply only to part of the Program, that part may be used separately
-under those permissions, but the entire Program remains governed by
-this License without regard to the additional permissions.
-
-  When you convey a copy of a covered work, you may at your option
-remove any additional permissions from that copy, or from any part of
-it.  (Additional permissions may be written to require their own
-removal in certain cases when you modify the work.)  You may place
-additional permissions on material, added by you to a covered work,
-for which you have or can give appropriate copyright permission.
-
-  Notwithstanding any other provision of this License, for material you
-add to a covered work, you may (if authorized by the copyright holders of
-that material) supplement the terms of this License with terms:
-
-    a) Disclaiming warranty or limiting liability differently from the
-    terms of sections 15 and 16 of this License; or
-
-    b) Requiring preservation of specified reasonable legal notices or
-    author attributions in that material or in the Appropriate Legal
-    Notices displayed by works containing it; or
-
-    c) Prohibiting misrepresentation of the origin of that material, or
-    requiring that modified versions of such material be marked in
-    reasonable ways as different from the original version; or
-
-    d) Limiting the use for publicity purposes of names of licensors or
-    authors of the material; or
-
-    e) Declining to grant rights under trademark law for use of some
-    trade names, trademarks, or service marks; or
-
-    f) Requiring indemnification of licensors and authors of that
-    material by anyone who conveys the material (or modified versions of
-    it) with contractual assumptions of liability to the recipient, for
-    any liability that these contractual assumptions directly impose on
-    those licensors and authors.
-
-  All other non-permissive additional terms are considered "further
-restrictions" within the meaning of section 10.  If the Program as you
-received it, or any part of it, contains a notice stating that it is
-governed by this License along with a term that is a further
-restriction, you may remove that term.  If a license document contains
-a further restriction but permits relicensing or conveying under this
-License, you may add to a covered work material governed by the terms
-of that license document, provided that the further restriction does
-not survive such relicensing or conveying.
-
-  If you add terms to a covered work in accord with this section, you
-must place, in the relevant source files, a statement of the
-additional terms that apply to those files, or a notice indicating
-where to find the applicable terms.
-
-  Additional terms, permissive or non-permissive, may be stated in the
-form of a separately written license, or stated as exceptions;
-the above requirements apply either way.
-
-  8. Termination.
-
-  You may not propagate or modify a covered work except as expressly
-provided under this License.  Any attempt otherwise to propagate or
-modify it is void, and will automatically terminate your rights under
-this License (including any patent licenses granted under the third
-paragraph of section 11).
-
-  However, if you cease all violation of this License, then your
-license from a particular copyright holder is reinstated (a)
-provisionally, unless and until the copyright holder explicitly and
-finally terminates your license, and (b) permanently, if the copyright
-holder fails to notify you of the violation by some reasonable means
-prior to 60 days after the cessation.
-
-  Moreover, your license from a particular copyright holder is
-reinstated permanently if the copyright holder notifies you of the
-violation by some reasonable means, this is the first time you have
-received notice of violation of this License (for any work) from that
-copyright holder, and you cure the violation prior to 30 days after
-your receipt of the notice.
-
-  Termination of your rights under this section does not terminate the
-licenses of parties who have received copies or rights from you under
-this License.  If your rights have been terminated and not permanently
-reinstated, you do not qualify to receive new licenses for the same
-material under section 10.
-
-  9. Acceptance Not Required for Having Copies.
-
-  You are not required to accept this License in order to receive or
-run a copy of the Program.  Ancillary propagation of a covered work
-occurring solely as a consequence of using peer-to-peer transmission
-to receive a copy likewise does not require acceptance.  However,
-nothing other than this License grants you permission to propagate or
-modify any covered work.  These actions infringe copyright if you do
-not accept this License.  Therefore, by modifying or propagating a
-covered work, you indicate your acceptance of this License to do so.
-
-  10. Automatic Licensing of Downstream Recipients.
-
-  Each time you convey a covered work, the recipient automatically
-receives a license from the original licensors, to run, modify and
-propagate that work, subject to this License.  You are not responsible
-for enforcing compliance by third parties with this License.
-
-  An "entity transaction" is a transaction transferring control of an
-organization, or substantially all assets of one, or subdividing an
-organization, or merging organizations.  If propagation of a covered
-work results from an entity transaction, each party to that
-transaction who receives a copy of the work also receives whatever
-licenses to the work the party's predecessor in interest had or could
-give under the previous paragraph, plus a right to possession of the
-Corresponding Source of the work from the predecessor in interest, if
-the predecessor has it or can get it with reasonable efforts.
-
-  You may not impose any further restrictions on the exercise of the
-rights granted or affirmed under this License.  For example, you may
-not impose a license fee, royalty, or other charge for exercise of
-rights granted under this License, and you may not initiate litigation
-(including a cross-claim or counterclaim in a lawsuit) alleging that
-any patent claim is infringed by making, using, selling, offering for
-sale, or importing the Program or any portion of it.
-
-  11. Patents.
-
-  A "contributor" is a copyright holder who authorizes use under this
-License of the Program or a work on which the Program is based.  The
-work thus licensed is called the contributor's "contributor version".
-
-  A contributor's "essential patent claims" are all patent claims
-owned or controlled by the contributor, whether already acquired or
-hereafter acquired, that would be infringed by some manner, permitted
-by this License, of making, using, or selling its contributor version,
-but do not include claims that would be infringed only as a
-consequence of further modification of the contributor version.  For
-purposes of this definition, "control" includes the right to grant
-patent sublicenses in a manner consistent with the requirements of
-this License.
-
-  Each contributor grants you a non-exclusive, worldwide, royalty-free
-patent license under the contributor's essential patent claims, to
-make, use, sell, offer for sale, import and otherwise run, modify and
-propagate the contents of its contributor version.
-
-  In the following three paragraphs, a "patent license" is any express
-agreement or commitment, however denominated, not to enforce a patent
-(such as an express permission to practice a patent or covenant not to
-sue for patent infringement).  To "grant" such a patent license to a
-party means to make such an agreement or commitment not to enforce a
-patent against the party.
-
-  If you convey a covered work, knowingly relying on a patent license,
-and the Corresponding Source of the work is not available for anyone
-to copy, free of charge and under the terms of this License, through a
-publicly available network server or other readily accessible means,
-then you must either (1) cause the Corresponding Source to be so
-available, or (2) arrange to deprive yourself of the benefit of the
-patent license for this particular work, or (3) arrange, in a manner
-consistent with the requirements of this License, to extend the patent
-license to downstream recipients.  "Knowingly relying" means you have
-actual knowledge that, but for the patent license, your conveying the
-covered work in a country, or your recipient's use of the covered work
-in a country, would infringe one or more identifiable patents in that
-country that you have reason to believe are valid.
-
-  If, pursuant to or in connection with a single transaction or
-arrangement, you convey, or propagate by procuring conveyance of, a
-covered work, and grant a patent license to some of the parties
-receiving the covered work authorizing them to use, propagate, modify
-or convey a specific copy of the covered work, then the patent license
-you grant is automatically extended to all recipients of the covered
-work and works based on it.
-
-  A patent license is "discriminatory" if it does not include within
-the scope of its coverage, prohibits the exercise of, or is
-conditioned on the non-exercise of one or more of the rights that are
-specifically granted under this License.  You may not convey a covered
-work if you are a party to an arrangement with a third party that is
-in the business of distributing software, under which you make payment
-to the third party based on the extent of your activity of conveying
-the work, and under which the third party grants, to any of the
-parties who would receive the covered work from you, a discriminatory
-patent license (a) in connection with copies of the covered work
-conveyed by you (or copies made from those copies), or (b) primarily
-for and in connection with specific products or compilations that
-contain the covered work, unless you entered into that arrangement,
-or that patent license was granted, prior to 28 March 2007.
-
-  Nothing in this License shall be construed as excluding or limiting
-any implied license or other defenses to infringement that may
-otherwise be available to you under applicable patent law.
-
-  12. No Surrender of Others' Freedom.
-
-  If conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License.  If you cannot convey a
-covered work so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you may
-not convey it at all.  For example, if you agree to terms that obligate you
-to collect a royalty for further conveying from those to whom you convey
-the Program, the only way you could satisfy both those terms and this
-License would be to refrain entirely from conveying the Program.
-
-  13. Use with the GNU Affero General Public License.
-
-  Notwithstanding any other provision of this License, you have
-permission to link or combine any covered work with a work licensed
-under version 3 of the GNU Affero General Public License into a single
-combined work, and to convey the resulting work.  The terms of this
-License will continue to apply to the part which is the covered work,
-but the special requirements of the GNU Affero General Public License,
-section 13, concerning interaction through a network will apply to the
-combination as such.
-
-  14. Revised Versions of this License.
-
-  The Free Software Foundation may publish revised and/or new versions of
-the GNU General Public License from time to time.  Such new versions will
-be similar in spirit to the present version, but may differ in detail to
-address new problems or concerns.
-
-  Each version is given a distinguishing version number.  If the
-Program specifies that a certain numbered version of the GNU General
-Public License "or any later version" applies to it, you have the
-option of following the terms and conditions either of that numbered
-version or of any later version published by the Free Software
-Foundation.  If the Program does not specify a version number of the
-GNU General Public License, you may choose any version ever published
-by the Free Software Foundation.
-
-  If the Program specifies that a proxy can decide which future
-versions of the GNU General Public License can be used, that proxy's
-public statement of acceptance of a version permanently authorizes you
-to choose that version for the Program.
-
-  Later license versions may give you additional or different
-permissions.  However, no additional obligations are imposed on any
-author or copyright holder as a result of your choosing to follow a
-later version.
-
-  15. Disclaimer of Warranty.
-
-  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
-HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
-OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
-THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
-IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
-ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
-  16. Limitation of Liability.
-
-  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
-THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
-GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
-USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
-DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
-PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
-EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGES.
-
-  17. Interpretation of Sections 15 and 16.
-
-  If the disclaimer of warranty and limitation of liability provided
-above cannot be given local legal effect according to their terms,
-reviewing courts shall apply local law that most closely approximates
-an absolute waiver of all civil liability in connection with the
-Program, unless a warranty or assumption of liability accompanies a
-copy of the Program in return for a fee.
-
-                     END OF TERMS AND CONDITIONS
-
-            How to Apply These Terms to Your New Programs
-
-  If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these terms.
-
-  To do so, attach the following notices to the program.  It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
-    <one line to give the program's name and a brief idea of what it does.>
-    Copyright (C) <year>  <name of author>
-
-    This program is free software: you can redistribute it and/or modify
-    it under the terms of the GNU General Public License as published by
-    the Free Software Foundation, either version 3 of the License, or
-    (at your option) any later version.
-
-    This program is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-    GNU General Public License for more details.
-
-    You should have received a copy of the GNU General Public License
-    along with this program.  If not, see <http://www.gnu.org/licenses/>.
-
-Also add information on how to contact you by electronic and paper mail.
-
-  If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
-    <program>  Copyright (C) <year>  <name of author>
-    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
-    This is free software, and you are welcome to redistribute it
-    under certain conditions; type `show c' for details.
-
-The hypothetical commands `show w' and `show c' should show the appropriate
-parts of the General Public License.  Of course, your program's commands
-might be different; for a GUI interface, you would use an "about box".
-
-  You should also get your employer (if you work as a programmer) or school,
-if any, to sign a "copyright disclaimer" for the program, if necessary.
-For more information on this, and how to apply and follow the GNU GPL, see
-<http://www.gnu.org/licenses/>.
-
-  The GNU General Public License does not permit incorporating your program
-into proprietary programs.  If your program is a subroutine library, you
-may consider it more useful to permit linking proprietary applications with
-the library.  If this is what you want to do, use the GNU Lesser General
-Public License instead of this License.  But first, please read
-<http://www.gnu.org/philosophy/why-not-lgpl.html>.
+## Copyright (C) 2007 Muthiah Annamalai <muthiah.annamalai@uta.edu>
+## Copyright (C) 2012 Carn�� Draug <carandraug+dev@gmail.com>
+##
+## This program is free software; you can redistribute it and/or modify it under
+## the terms of the GNU General Public License as published by the Free Software
+## Foundation; either version 3 of the License, or (at your option) any later
+## version.
+##
+## This program is distributed in the hope that it will be useful, but WITHOUT
+## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+## details.
+##
+## You should have received a copy of the GNU General Public License along with
+## this program; if not, see <http://www.gnu.org/licenses/>.
+
+## -*- texinfo -*-
+## @deftypefn {Function File} {[@var{names}] =} physical_constant
+## @deftypefnx {Function File} {[@var{val}, @var{uncertainty}, @var{unit}] =} physical_constant (@var{name})
+## @deftypefnx {Function File} {[@var{constants}] =} physical_constant ("all")
+## Get physical constant @var{arg}.
+##
+## If no arguments are given, returns a cell array with all possible @var{name}s.
+## Alternatively, @var{name} can be `all' in which case @var{val} is a structure
+## array with 4 fields (name, value, uncertainty, units).
+##
+## Since the long list of values needs to be parsed on each call to this function
+## it is much more efficient to store the values in a variable rather make multiple
+## calls to this function with the same argument
+##
+## The values are the ones recommended by CODATA. This function was autogenerated
+## on Wed Apr 25 22:17:07 2012 from NIST database at @uref{http://physics.nist.gov/constants}
+## @end deftypefn
+
+## DO NOT EDIT THIS FILE
+## This function file is generated automatically by physical_constant.py
+
+function [rval, uncert, unit] = physical_constant (arg)
+
+  persistent unit_data;
+  if (isempty(unit_data))
+    unit_data = get_data;
+  endif
+
+  if (nargin > 1 || (nargin == 1 && !ischar (arg)))
+    print_usage;
+  elseif (nargin == 0)
+    rval = reshape ({unit_data(:).name}, size (unit_data));
+    return
+  elseif (nargin == 1 && strcmpi (arg, "all"))
+    rval = unit_data;
+    return
+  endif
+
+  val = reshape ({unit_data(:).name}, size (unit_data));
+  map = strcmpi (val, arg);
+  if (any (map))
+    val     = unit_data(map);
+    rval    = val.value;
+    uncert  = val.uncertainty;
+    unit    = val.units;
+  else
+    error ("No constant with name '%s' found", arg)
+  endif
+endfunction
+
+function unit_data = get_data
+  unit_data(1).name        = "Angstrom star";
+  unit_data(1).value       = 1.00001495e-10;
+  unit_data(1).uncertainty = 0.00000090e-10;
+  unit_data(1).units       = "m";
+
+  unit_data(2).name        = "Avogadro constant";
+  unit_data(2).value       = 6.02214129e23;
+  unit_data(2).uncertainty = 0.00000027e23;
+  unit_data(2).units       = "mol^-1";
+
+  unit_data(3).name        = "Bohr magneton";
+  unit_data(3).value       = 927.400968e-26;
+  unit_data(3).uncertainty = 0.000020e-26;
+  unit_data(3).units       = "J T^-1";
+
+  unit_data(4).name        = "Bohr magneton in Hz/T";
+  unit_data(4).value       = 13.99624555e9;
+  unit_data(4).uncertainty = 0.00000031e9;
+  unit_data(4).units       = "Hz T^-1";
+
+  unit_data(5).name        = "Bohr magneton in K/T";
+  unit_data(5).value       = 0.67171388;
+  unit_data(5).uncertainty = 0.00000061;
+  unit_data(5).units       = "K T^-1";
+
+  unit_data(6).name        = "Bohr magneton in eV/T";
+  unit_data(6).value       = 5.7883818066e-5;
+  unit_data(6).uncertainty = 0.0000000038e-5;
+  unit_data(6).units       = "eV T^-1";
+
+  unit_data(7).name        = "Bohr magneton in inverse meters per tesla";
+  unit_data(7).value       = 46.6864498;
+  unit_data(7).uncertainty = 0.0000010;
+  unit_data(7).units       = "m^-1 T^-1";
+
+  unit_data(8).name        = "Bohr radius";
+  unit_data(8).value       = 0.52917721092e-10;
+  unit_data(8).uncertainty = 0.00000000017e-10;
+  unit_data(8).units       = "m";
+
+  unit_data(9).name        = "Boltzmann constant";
+  unit_data(9).value       = 1.3806488e-23;
+  unit_data(9).uncertainty = 0.0000013e-23;
+  unit_data(9).units       = "J K^-1";
+
+  unit_data(10).name        = "Boltzmann constant in Hz/K";
+  unit_data(10).value       = 2.0836618e10;
+  unit_data(10).uncertainty = 0.0000019e10;
+  unit_data(10).units       = "Hz K^-1";
+
+  unit_data(11).name        = "Boltzmann constant in eV/K";
+  unit_data(11).value       = 8.6173324e-5;
+  unit_data(11).uncertainty = 0.0000078e-5;
+  unit_data(11).units       = "eV K^-1";
+
+  unit_data(12).name        = "Boltzmann constant in inverse meters per kelvin";
+  unit_data(12).value       = 69.503476;
+  unit_data(12).uncertainty = 0.000063;
+  unit_data(12).units       = "m^-1 K^-1";
+
+  unit_data(13).name        = "Compton wavelength";
+  unit_data(13).value       = 2.4263102389e-12;
+  unit_data(13).uncertainty = 0.0000000016e-12;
+  unit_data(13).units       = "m";
+
+  unit_data(14).name        = "Compton wavelength over 2 pi";
+  unit_data(14).value       = 386.15926800e-15;
+  unit_data(14).uncertainty = 0.00000025e-15;
+  unit_data(14).units       = "m";
+
+  unit_data(15).name        = "Cu x unit";
+  unit_data(15).value       = 1.00207697e-13;
+  unit_data(15).uncertainty = 0.00000028e-13;
+  unit_data(15).units       = "m";
+
+  unit_data(16).name        = "Faraday constant";
+  unit_data(16).value       = 96485.3365;
+  unit_data(16).uncertainty = 0.0021;
+  unit_data(16).units       = "C mol^-1";
+
+  unit_data(17).name        = "Faraday constant for conventional electric current";
+  unit_data(17).value       = 96485.3321;
+  unit_data(17).uncertainty = 0.0043;
+  unit_data(17).units       = "C_90 mol^-1";
+
+  unit_data(18).name        = "Fermi coupling constant";
+  unit_data(18).value       = 1.166364e-5;
+  unit_data(18).uncertainty = 0.000005e-5;
+  unit_data(18).units       = "GeV^-2";
+
+  unit_data(19).name        = "Hartree energy";
+  unit_data(19).value       = 4.35974434e-18;
+  unit_data(19).uncertainty = 0.00000019e-18;
+  unit_data(19).units       = "J";
+
+  unit_data(20).name        = "Hartree energy in eV";
+  unit_data(20).value       = 27.21138505;
+  unit_data(20).uncertainty = 0.00000060;
+  unit_data(20).units       = "eV";
+
+  unit_data(21).name        = "Josephson constant";
+  unit_data(21).value       = 483597.870e9;
+  unit_data(21).uncertainty = 0.011e9;
+  unit_data(21).units       = "Hz V^-1";
+
+  unit_data(22).name        = "Loschmidt constant (273.15 K, 100 kPa)";
+  unit_data(22).value       = 2.6516462e25;
+  unit_data(22).uncertainty = 0.0000024e25;
+  unit_data(22).units       = "m^-3";
+
+  unit_data(23).name        = "Loschmidt constant (273.15 K, 101.325 kPa)";
+  unit_data(23).value       = 2.6867805e25;
+  unit_data(23).uncertainty = 0.0000024e25;
+  unit_data(23).units       = "m^-3";
+
+  unit_data(24).name        = "Mo x unit";
+  unit_data(24).value       = 1.00209952e-13;
+  unit_data(24).uncertainty = 0.00000053e-13;
+  unit_data(24).units       = "m";
+
+  unit_data(25).name        = "Newtonian constant of gravitation";
+  unit_data(25).value       = 6.67384e-11;
+  unit_data(25).uncertainty = 0.00080e-11;
+  unit_data(25).units       = "m^3 kg^-1 s^-2";
+
+  unit_data(26).name        = "Newtonian constant of gravitation over h-bar c";
+  unit_data(26).value       = 6.70837e-39;
+  unit_data(26).uncertainty = 0.00080e-39;
+  unit_data(26).units       = "(GeV/c^2)^-2";
+
+  unit_data(27).name        = "Planck constant";
+  unit_data(27).value       = 6.62606957e-34;
+  unit_data(27).uncertainty = 0.00000029e-34;
+  unit_data(27).units       = "J s";
+
+  unit_data(28).name        = "Planck constant in eV s";
+  unit_data(28).value       = 4.135667516e-15;
+  unit_data(28).uncertainty = 0.000000091e-15;
+  unit_data(28).units       = "eV s";
+
+  unit_data(29).name        = "Planck constant over 2 pi";
+  unit_data(29).value       = 1.054571726e-34;
+  unit_data(29).uncertainty = 0.000000047e-34;
+  unit_data(29).units       = "J s";
+
+  unit_data(30).name        = "Planck constant over 2 pi in eV s";
+  unit_data(30).value       = 6.58211928e-16;
+  unit_data(30).uncertainty = 0.00000015e-16;
+  unit_data(30).units       = "eV s";
+
+  unit_data(31).name        = "Planck constant over 2 pi times c in MeV fm";
+  unit_data(31).value       = 197.3269718;
+  unit_data(31).uncertainty = 0.0000044;
+  unit_data(31).units       = "MeV fm";
+
+  unit_data(32).name        = "Planck length";
+  unit_data(32).value       = 1.616199e-35;
+  unit_data(32).uncertainty = 0.000097e-35;
+  unit_data(32).units       = "m";
+
+  unit_data(33).name        = "Planck mass";
+  unit_data(33).value       = 2.17651e-8;
+  unit_data(33).uncertainty = 0.00013e-8;
+  unit_data(33).units       = "kg";
+
+  unit_data(34).name        = "Planck mass energy equivalent in GeV";
+  unit_data(34).value       = 1.220932e19;
+  unit_data(34).uncertainty = 0.000073e19;
+  unit_data(34).units       = "GeV";
+
+  unit_data(35).name        = "Planck temperature";
+  unit_data(35).value       = 1.416833e32;
+  unit_data(35).uncertainty = 0.000085e32;
+  unit_data(35).units       = "K";
+
+  unit_data(36).name        = "Planck time";
+  unit_data(36).value       = 5.39106e-44;
+  unit_data(36).uncertainty = 0.00032e-44;
+  unit_data(36).units       = "s";
+
+  unit_data(37).name        = "Rydberg constant";
+  unit_data(37).value       = 10973731.568539;
+  unit_data(37).uncertainty = 0.000055;
+  unit_data(37).units       = "m^-1";
+
+  unit_data(38).name        = "Rydberg constant times c in Hz";
+  unit_data(38).value       = 3.289841960364e15;
+  unit_data(38).uncertainty = 0.000000000017e15;
+  unit_data(38).units       = "Hz";
+
+  unit_data(39).name        = "Rydberg constant times hc in J";
+  unit_data(39).value       = 2.179872171e-18;
+  unit_data(39).uncertainty = 0.000000096e-18;
+  unit_data(39).units       = "J";
+
+  unit_data(40).name        = "Rydberg constant times hc in eV";
+  unit_data(40).value       = 13.60569253;
+  unit_data(40).uncertainty = 0.00000030;
+  unit_data(40).units       = "eV";
+
+  unit_data(41).name        = "Sackur-Tetrode constant (1 K, 100 kPa)";
+  unit_data(41).value       = -1.1517078;
+  unit_data(41).uncertainty = 0.0000023;
+  unit_data(41).units       = "";
+
+  unit_data(42).name        = "Sackur-Tetrode constant (1 K, 101.325 kPa)";
+  unit_data(42).value       = -1.1648708;
+  unit_data(42).uncertainty = 0.0000023;
+  unit_data(42).units       = "";
+
+  unit_data(43).name        = "Stefan-Boltzmann constant";
+  unit_data(43).value       = 5.670373e-8;
+  unit_data(43).uncertainty = 0.000021e-8;
+  unit_data(43).units       = "W m^-2 K^-4";
+
+  unit_data(44).name        = "Thomson cross section";
+  unit_data(44).value       = 0.6652458734e-28;
+  unit_data(44).uncertainty = 0.0000000013e-28;
+  unit_data(44).units       = "m^2";
+
+  unit_data(45).name        = "Wien frequency displacement law constant";
+  unit_data(45).value       = 5.8789254e10;
+  unit_data(45).uncertainty = 0.0000053e10;
+  unit_data(45).units       = "Hz K^-1";
+
+  unit_data(46).name        = "Wien wavelength displacement law constant";
+  unit_data(46).value       = 2.8977721e-3;
+  unit_data(46).uncertainty = 0.0000026e-3;
+  unit_data(46).units       = "m K";
+
+  unit_data(47).name        = "alpha particle mass";
+  unit_data(47).value       = 6.64465675e-27;
+  unit_data(47).uncertainty = 0.00000029e-27;
+  unit_data(47).units       = "kg";
+
+  unit_data(48).name        = "alpha particle mass energy equivalent";
+  unit_data(48).value       = 5.97191967e-10;
+  unit_data(48).uncertainty = 0.00000026e-10;
+  unit_data(48).units       = "J";
+
+  unit_data(49).name        = "alpha particle mass energy equivalent in MeV";
+  unit_data(49).value       = 3727.379240;
+  unit_data(49).uncertainty = 0.000082;
+  unit_data(49).units       = "MeV";
+
+  unit_data(50).name        = "alpha particle mass in u";
+  unit_data(50).value       = 4.001506179125;
+  unit_data(50).uncertainty = 0.000000000062;
+  unit_data(50).units       = "u";
+
+  unit_data(51).name        = "alpha particle molar mass";
+  unit_data(51).value       = 4.001506179125e-3;
+  unit_data(51).uncertainty = 0.000000000062e-3;
+  unit_data(51).units       = "kg mol^-1";
+
+  unit_data(52).name        = "alpha particle-electron mass ratio";
+  unit_data(52).value       = 7294.2995361;
+  unit_data(52).uncertainty = 0.0000029;
+  unit_data(52).units       = "";
+
+  unit_data(53).name        = "alpha particle-proton mass ratio";
+  unit_data(53).value       = 3.97259968933;
+  unit_data(53).uncertainty = 0.00000000036;
+  unit_data(53).units       = "";
+
+  unit_data(54).name        = "atomic mass constant";
+  unit_data(54).value       = 1.660538921e-27;
+  unit_data(54).uncertainty = 0.000000073e-27;
+  unit_data(54).units       = "kg";
+
+  unit_data(55).name        = "atomic mass constant energy equivalent";
+  unit_data(55).value       = 1.492417954e-10;
+  unit_data(55).uncertainty = 0.000000066e-10;
+  unit_data(55).units       = "J";
+
+  unit_data(56).name        = "atomic mass constant energy equivalent in MeV";
+  unit_data(56).value       = 931.494061;
+  unit_data(56).uncertainty = 0.000021;
+  unit_data(56).units       = "MeV";
+
+  unit_data(57).name        = "atomic mass unit-electron volt relationship";
+  unit_data(57).value       = 931.494061e6;
+  unit_data(57).uncertainty = 0.000021e6;
+  unit_data(57).units       = "eV";
+
+  unit_data(58).name        = "atomic mass unit-hartree relationship";
+  unit_data(58).value       = 3.4231776845e7;
+  unit_data(58).uncertainty = 0.0000000024e7;
+  unit_data(58).units       = "E_h";
+
+  unit_data(59).name        = "atomic mass unit-hertz relationship";
+  unit_data(59).value       = 2.2523427168e23;
+  unit_data(59).uncertainty = 0.0000000016e23;
+  unit_data(59).units       = "Hz";
+
+  unit_data(60).name        = "atomic mass unit-inverse meter relationship";
+  unit_data(60).value       = 7.5130066042e14;
+  unit_data(60).uncertainty = 0.0000000053e14;
+  unit_data(60).units       = "m^-1";
+
+  unit_data(61).name        = "atomic mass unit-joule relationship";
+  unit_data(61).value       = 1.492417954e-10;
+  unit_data(61).uncertainty = 0.000000066e-10;
+  unit_data(61).units       = "J";
+
+  unit_data(62).name        = "atomic mass unit-kelvin relationship";
+  unit_data(62).value       = 1.08095408e13;
+  unit_data(62).uncertainty = 0.00000098e13;
+  unit_data(62).units       = "K";
+
+  unit_data(63).name        = "atomic mass unit-kilogram relationship";
+  unit_data(63).value       = 1.660538921e-27;
+  unit_data(63).uncertainty = 0.000000073e-27;
+  unit_data(63).units       = "kg";
+
+  unit_data(64).name        = "atomic unit of 1st hyperpolarizability";
+  unit_data(64).value       = 3.206361449e-53;
+  unit_data(64).uncertainty = 0.000000071e-53;
+  unit_data(64).units       = "C^3 m^3 J^-2";
+
+  unit_data(65).name        = "atomic unit of 2nd hyperpolarizability";
+  unit_data(65).value       = 6.23538054e-65;
+  unit_data(65).uncertainty = 0.00000028e-65;
+  unit_data(65).units       = "C^4 m^4 J^-3";
+
+  unit_data(66).name        = "atomic unit of action";
+  unit_data(66).value       = 1.054571726e-34;
+  unit_data(66).uncertainty = 0.000000047e-34;
+  unit_data(66).units       = "J s";
+
+  unit_data(67).name        = "atomic unit of charge";
+  unit_data(67).value       = 1.602176565e-19;
+  unit_data(67).uncertainty = 0.000000035e-19;
+  unit_data(67).units       = "C";
+
+  unit_data(68).name        = "atomic unit of charge density";
+  unit_data(68).value       = 1.081202338e12;
+  unit_data(68).uncertainty = 0.000000024e12;
+  unit_data(68).units       = "C m^-3";
+
+  unit_data(69).name        = "atomic unit of current";
+  unit_data(69).value       = 6.62361795e-3;
+  unit_data(69).uncertainty = 0.00000015e-3;
+  unit_data(69).units       = "A";
+
+  unit_data(70).name        = "atomic unit of electric dipole mom.";
+  unit_data(70).value       = 8.47835326e-30;
+  unit_data(70).uncertainty = 0.00000019e-30;
+  unit_data(70).units       = "C m";
+
+  unit_data(71).name        = "atomic unit of electric field";
+  unit_data(71).value       = 5.14220652e11;
+  unit_data(71).uncertainty = 0.00000011e11;
+  unit_data(71).units       = "V m^-1";
+
+  unit_data(72).name        = "atomic unit of electric field gradient";
+  unit_data(72).value       = 9.71736200e21;
+  unit_data(72).uncertainty = 0.00000021e21;
+  unit_data(72).units       = "V m^-2";
+
+  unit_data(73).name        = "atomic unit of electric polarizability";
+  unit_data(73).value       = 1.6487772754e-41;
+  unit_data(73).uncertainty = 0.0000000016e-41;
+  unit_data(73).units       = "C^2 m^2 J^-1";
+
+  unit_data(74).name        = "atomic unit of electric potential";
+  unit_data(74).value       = 27.21138505;
+  unit_data(74).uncertainty = 0.00000060;
+  unit_data(74).units       = "V";
+
+  unit_data(75).name        = "atomic unit of electric quadrupole mom.";
+  unit_data(75).value       = 4.486551331e-40;
+  unit_data(75).uncertainty = 0.000000099e-40;
+  unit_data(75).units       = "C m^2";
+
+  unit_data(76).name        = "atomic unit of energy";
+  unit_data(76).value       = 4.35974434e-18;
+  unit_data(76).uncertainty = 0.00000019e-18;
+  unit_data(76).units       = "J";
+
+  unit_data(77).name        = "atomic unit of force";
+  unit_data(77).value       = 8.23872278e-8;
+  unit_data(77).uncertainty = 0.00000036e-8;
+  unit_data(77).units       = "N";
+
+  unit_data(78).name        = "atomic unit of length";
+  unit_data(78).value       = 0.52917721092e-10;
+  unit_data(78).uncertainty = 0.00000000017e-10;
+  unit_data(78).units       = "m";
+
+  unit_data(79).name        = "atomic unit of mag. dipole mom.";
+  unit_data(79).value       = 1.854801936e-23;
+  unit_data(79).uncertainty = 0.000000041e-23;
+  unit_data(79).units       = "J T^-1";
+
+  unit_data(80).name        = "atomic unit of mag. flux density";
+  unit_data(80).value       = 2.350517464e5;
+  unit_data(80).uncertainty = 0.000000052e5;
+  unit_data(80).units       = "T";
+
+  unit_data(81).name        = "atomic unit of magnetizability";
+  unit_data(81).value       = 7.891036607e-29;
+  unit_data(81).uncertainty = 0.000000013e-29;
+  unit_data(81).units       = "J T^-2";
+
+  unit_data(82).name        = "atomic unit of mass";
+  unit_data(82).value       = 9.10938291e-31;
+  unit_data(82).uncertainty = 0.00000040e-31;
+  unit_data(82).units       = "kg";
+
+  unit_data(83).name        = "atomic unit of mom.um";
+  unit_data(83).value       = 1.992851740e-24;
+  unit_data(83).uncertainty = 0.000000088e-24;
+  unit_data(83).units       = "kg m s^-1";
+
+  unit_data(84).name        = "atomic unit of permittivity";
+  unit_data(84).value       = 1.112650056e-10;
+  unit_data(84).uncertainty = 0.0;
+  unit_data(84).units       = "F m^-1";
+
+  unit_data(85).name        = "atomic unit of time";
+  unit_data(85).value       = 2.418884326502e-17;
+  unit_data(85).uncertainty = 0.000000000012e-17;
+  unit_data(85).units       = "s";
+
+  unit_data(86).name        = "atomic unit of velocity";
+  unit_data(86).value       = 2.18769126379e6;
+  unit_data(86).uncertainty = 0.00000000071e6;
+  unit_data(86).units       = "m s^-1";
+
+  unit_data(87).name        = "characteristic impedance of vacuum";
+  unit_data(87).value       = 376.730313461;
+  unit_data(87).uncertainty = 0.0;
+  unit_data(87).units       = "ohm";
+
+  unit_data(88).name        = "classical electron radius";
+  unit_data(88).value       = 2.8179403267e-15;
+  unit_data(88).uncertainty = 0.0000000027e-15;
+  unit_data(88).units       = "m";
+
+  unit_data(89).name        = "conductance quantum";
+  unit_data(89).value       = 7.7480917346e-5;
+  unit_data(89).uncertainty = 0.0000000025e-5;
+  unit_data(89).units       = "S";
+
+  unit_data(90).name        = "conventional value of Josephson constant";
+  unit_data(90).value       = 483597.9e9;
+  unit_data(90).uncertainty = 0.0;
+  unit_data(90).units       = "Hz V^-1";
+
+  unit_data(91).name        = "conventional value of von Klitzing constant";
+  unit_data(91).value       = 25812.807;
+  unit_data(91).uncertainty = 0.0;
+  unit_data(91).units       = "ohm";
+
+  unit_data(92).name        = "deuteron g factor";
+  unit_data(92).value       = 0.8574382308;
+  unit_data(92).uncertainty = 0.0000000072;
+  unit_data(92).units       = "";
+
+  unit_data(93).name        = "deuteron mag. mom.";
+  unit_data(93).value       = 0.433073489e-26;
+  unit_data(93).uncertainty = 0.000000010e-26;
+  unit_data(93).units       = "J T^-1";
+
+  unit_data(94).name        = "deuteron mag. mom. to Bohr magneton ratio";
+  unit_data(94).value       = 0.4669754556e-3;
+  unit_data(94).uncertainty = 0.0000000039e-3;
+  unit_data(94).units       = "";
+
+  unit_data(95).name        = "deuteron mag. mom. to nuclear magneton ratio";
+  unit_data(95).value       = 0.8574382308;
+  unit_data(95).uncertainty = 0.0000000072;
+  unit_data(95).units       = "";
+
+  unit_data(96).name        = "deuteron mass";
+  unit_data(96).value       = 3.34358348e-27;
+  unit_data(96).uncertainty = 0.00000015e-27;
+  unit_data(96).units       = "kg";
+
+  unit_data(97).name        = "deuteron mass energy equivalent";
+  unit_data(97).value       = 3.00506297e-10;
+  unit_data(97).uncertainty = 0.00000013e-10;
+  unit_data(97).units       = "J";
+
+  unit_data(98).name        = "deuteron mass energy equivalent in MeV";
+  unit_data(98).value       = 1875.612859;
+  unit_data(98).uncertainty = 0.000041;
+  unit_data(98).units       = "MeV";
+
+  unit_data(99).name        = "deuteron mass in u";
+  unit_data(99).value       = 2.013553212712;
+  unit_data(99).uncertainty = 0.000000000077;
+  unit_data(99).units       = "u";
+
+  unit_data(100).name        = "deuteron molar mass";
+  unit_data(100).value       = 2.013553212712e-3;
+  unit_data(100).uncertainty = 0.000000000077e-3;
+  unit_data(100).units       = "kg mol^-1";
+
+  unit_data(101).name        = "deuteron rms charge radius";
+  unit_data(101).value       = 2.1424e-15;
+  unit_data(101).uncertainty = 0.0021e-15;
+  unit_data(101).units       = "m";
+
+  unit_data(102).name        = "deuteron-electron mag. mom. ratio";
+  unit_data(102).value       = -4.664345537e-4;
+  unit_data(102).uncertainty = 0.000000039e-4;
+  unit_data(102).units       = "";
+
+  unit_data(103).name        = "deuteron-electron mass ratio";
+  unit_data(103).value       = 3670.4829652;
+  unit_data(103).uncertainty = 0.0000015;
+  unit_data(103).units       = "";
+
+  unit_data(104).name        = "deuteron-neutron mag. mom. ratio";
+  unit_data(104).value       = -0.44820652;
+  unit_data(104).uncertainty = 0.00000011;
+  unit_data(104).units       = "";
+
+  unit_data(105).name        = "deuteron-proton mag. mom. ratio";
+  unit_data(105).value       = 0.3070122070;
+  unit_data(105).uncertainty = 0.0000000024;
+  unit_data(105).units       = "";
+
+  unit_data(106).name        = "deuteron-proton mass ratio";
+  unit_data(106).value       = 1.99900750097;
+  unit_data(106).uncertainty = 0.00000000018;
+  unit_data(106).units       = "";
+
+  unit_data(107).name        = "electric constant";
+  unit_data(107).value       = 8.854187817e-12;
+  unit_data(107).uncertainty = 0.0;
+  unit_data(107).units       = "F m^-1";
+
+  unit_data(108).name        = "electron charge to mass quotient";
+  unit_data(108).value       = -1.758820088e11;
+  unit_data(108).uncertainty = 0.000000039e11;
+  unit_data(108).units       = "C kg^-1";
+
+  unit_data(109).name        = "electron g factor";
+  unit_data(109).value       = -2.00231930436153;
+  unit_data(109).uncertainty = 0.00000000000053;
+  unit_data(109).units       = "";
+
+  unit_data(110).name        = "electron gyromag. ratio";
+  unit_data(110).value       = 1.760859708e11;
+  unit_data(110).uncertainty = 0.000000039e11;
+  unit_data(110).units       = "s^-1 T^-1";
+
+  unit_data(111).name        = "electron gyromag. ratio over 2 pi";
+  unit_data(111).value       = 28024.95266;
+  unit_data(111).uncertainty = 0.00062;
+  unit_data(111).units       = "MHz T^-1";
+
+  unit_data(112).name        = "electron mag. mom.";
+  unit_data(112).value       = -928.476430e-26;
+  unit_data(112).uncertainty = 0.000021e-26;
+  unit_data(112).units       = "J T^-1";
+
+  unit_data(113).name        = "electron mag. mom. anomaly";
+  unit_data(113).value       = 1.15965218076e-3;
+  unit_data(113).uncertainty = 0.00000000027e-3;
+  unit_data(113).units       = "";
+
+  unit_data(114).name        = "electron mag. mom. to Bohr magneton ratio";
+  unit_data(114).value       = -1.00115965218076;
+  unit_data(114).uncertainty = 0.00000000000027;
+  unit_data(114).units       = "";
+
+  unit_data(115).name        = "electron mag. mom. to nuclear magneton ratio";
+  unit_data(115).value       = -1838.28197090;
+  unit_data(115).uncertainty = 0.00000075;
+  unit_data(115).units       = "";
+
+  unit_data(116).name        = "electron mass";
+  unit_data(116).value       = 9.10938291e-31;
+  unit_data(116).uncertainty = 0.00000040e-31;
+  unit_data(116).units       = "kg";
+
+  unit_data(117).name        = "electron mass energy equivalent";
+  unit_data(117).value       = 8.18710506e-14;
+  unit_data(117).uncertainty = 0.00000036e-14;
+  unit_data(117).units       = "J";
+
+  unit_data(118).name        = "electron mass energy equivalent in MeV";
+  unit_data(118).value       = 0.510998928;
+  unit_data(118).uncertainty = 0.000000011;
+  unit_data(118).units       = "MeV";
+
+  unit_data(119).name        = "electron mass in u";
+  unit_data(119).value       = 5.4857990946e-4;
+  unit_data(119).uncertainty = 0.0000000022e-4;
+  unit_data(119).units       = "u";
+
+  unit_data(120).name        = "electron molar mass";
+  unit_data(120).value       = 5.4857990946e-7;
+  unit_data(120).uncertainty = 0.0000000022e-7;
+  unit_data(120).units       = "kg mol^-1";
+
+  unit_data(121).name        = "electron to alpha particle mass ratio";
+  unit_data(121).value       = 1.37093355578e-4;
+  unit_data(121).uncertainty = 0.00000000055e-4;
+  unit_data(121).units       = "";
+
+  unit_data(122).name        = "electron to shielded helion mag. mom. ratio";
+  unit_data(122).value       = 864.058257;
+  unit_data(122).uncertainty = 0.000010;
+  unit_data(122).units       = "";
+
+  unit_data(123).name        = "electron to shielded proton mag. mom. ratio";
+  unit_data(123).value       = -658.2275971;
+  unit_data(123).uncertainty = 0.0000072;
+  unit_data(123).units       = "";
+
+  unit_data(124).name        = "electron volt";
+  unit_data(124).value       = 1.602176565e-19;
+  unit_data(124).uncertainty = 0.000000035e-19;
+  unit_data(124).units       = "J";
+
+  unit_data(125).name        = "electron volt-atomic mass unit relationship";
+  unit_data(125).value       = 1.073544150e-9;
+  unit_data(125).uncertainty = 0.000000024e-9;
+  unit_data(125).units       = "u";
+
+  unit_data(126).name        = "electron volt-hartree relationship";
+  unit_data(126).value       = 3.674932379e-2;
+  unit_data(126).uncertainty = 0.000000081e-2;
+  unit_data(126).units       = "E_h";
+
+  unit_data(127).name        = "electron volt-hertz relationship";
+  unit_data(127).value       = 2.417989348e14;
+  unit_data(127).uncertainty = 0.000000053e14;
+  unit_data(127).units       = "Hz";
+
+  unit_data(128).name        = "electron volt-inverse meter relationship";
+  unit_data(128).value       = 8.06554429e5;
+  unit_data(128).uncertainty = 0.00000018e5;
+  unit_data(128).units       = "m^-1";
+
+  unit_data(129).name        = "electron volt-joule relationship";
+  unit_data(129).value       = 1.602176565e-19;
+  unit_data(129).uncertainty = 0.000000035e-19;
+  unit_data(129).units       = "J";
+
+  unit_data(130).name        = "electron volt-kelvin relationship";
+  unit_data(130).value       = 1.1604519e4;
+  unit_data(130).uncertainty = 0.0000011e4;
+  unit_data(130).units       = "K";
+
+  unit_data(131).name        = "electron volt-kilogram relationship";
+  unit_data(131).value       = 1.782661845e-36;
+  unit_data(131).uncertainty = 0.000000039e-36;
+  unit_data(131).units       = "kg";
+
+  unit_data(132).name        = "electron-deuteron mag. mom. ratio";
+  unit_data(132).value       = -2143.923498;
+  unit_data(132).uncertainty = 0.000018;
+  unit_data(132).units       = "";
+
+  unit_data(133).name        = "electron-deuteron mass ratio";
+  unit_data(133).value       = 2.7244371095e-4;
+  unit_data(133).uncertainty = 0.0000000011e-4;
+  unit_data(133).units       = "";
+
+  unit_data(134).name        = "electron-helion mass ratio";
+  unit_data(134).value       = 1.8195430761e-4;
+  unit_data(134).uncertainty = 0.0000000017e-4;
+  unit_data(134).units       = "";
+
+  unit_data(135).name        = "electron-muon mag. mom. ratio";
+  unit_data(135).value       = 206.7669896;
+  unit_data(135).uncertainty = 0.0000052;
+  unit_data(135).units       = "";
+
+  unit_data(136).name        = "electron-muon mass ratio";
+  unit_data(136).value       = 4.83633166e-3;
+  unit_data(136).uncertainty = 0.00000012e-3;
+  unit_data(136).units       = "";
+
+  unit_data(137).name        = "electron-neutron mag. mom. ratio";
+  unit_data(137).value       = 960.92050;
+  unit_data(137).uncertainty = 0.00023;
+  unit_data(137).units       = "";
+
+  unit_data(138).name        = "electron-neutron mass ratio";
+  unit_data(138).value       = 5.4386734461e-4;
+  unit_data(138).uncertainty = 0.0000000032e-4;
+  unit_data(138).units       = "";
+
+  unit_data(139).name        = "electron-proton mag. mom. ratio";
+  unit_data(139).value       = -658.2106848;
+  unit_data(139).uncertainty = 0.0000054;
+  unit_data(139).units       = "";
+
+  unit_data(140).name        = "electron-proton mass ratio";
+  unit_data(140).value       = 5.4461702178e-4;
+  unit_data(140).uncertainty = 0.0000000022e-4;
+  unit_data(140).units       = "";
+
+  unit_data(141).name        = "electron-tau mass ratio";
+  unit_data(141).value       = 2.87592e-4;
+  unit_data(141).uncertainty = 0.00026e-4;
+  unit_data(141).units       = "";
+
+  unit_data(142).name        = "electron-triton mass ratio";
+  unit_data(142).value       = 1.8192000653e-4;
+  unit_data(142).uncertainty = 0.0000000017e-4;
+  unit_data(142).units       = "";
+
+  unit_data(143).name        = "elementary charge";
+  unit_data(143).value       = 1.602176565e-19;
+  unit_data(143).uncertainty = 0.000000035e-19;
+  unit_data(143).units       = "C";
+
+  unit_data(144).name        = "elementary charge over h";
+  unit_data(144).value       = 2.417989348e14;
+  unit_data(144).uncertainty = 0.000000053e14;
+  unit_data(144).units       = "A J^-1";
+
+  unit_data(145).name        = "fine-structure constant";
+  unit_data(145).value       = 7.2973525698e-3;
+  unit_data(145).uncertainty = 0.0000000024e-3;
+  unit_data(145).units       = "";
+
+  unit_data(146).name        = "first radiation constant";
+  unit_data(146).value       = 3.74177153e-16;
+  unit_data(146).uncertainty = 0.00000017e-16;
+  unit_data(146).units       = "W m^2";
+
+  unit_data(147).name        = "first radiation constant for spectral radiance";
+  unit_data(147).value       = 1.191042869e-16;
+  unit_data(147).uncertainty = 0.000000053e-16;
+  unit_data(147).units       = "W m^2 sr^-1";
+
+  unit_data(148).name        = "hartree-atomic mass unit relationship";
+  unit_data(148).value       = 2.9212623246e-8;
+  unit_data(148).uncertainty = 0.0000000021e-8;
+  unit_data(148).units       = "u";
+
+  unit_data(149).name        = "hartree-electron volt relationship";
+  unit_data(149).value       = 27.21138505;
+  unit_data(149).uncertainty = 0.00000060;
+  unit_data(149).units       = "eV";
+
+  unit_data(150).name        = "hartree-hertz relationship";
+  unit_data(150).value       = 6.579683920729e15;
+  unit_data(150).uncertainty = 0.000000000033e15;
+  unit_data(150).units       = "Hz";
+
+  unit_data(151).name        = "hartree-inverse meter relationship";
+  unit_data(151).value       = 2.194746313708e7;
+  unit_data(151).uncertainty = 0.000000000011e7;
+  unit_data(151).units       = "m^-1";
+
+  unit_data(152).name        = "hartree-joule relationship";
+  unit_data(152).value       = 4.35974434e-18;
+  unit_data(152).uncertainty = 0.00000019e-18;
+  unit_data(152).units       = "J";
+
+  unit_data(153).name        = "hartree-kelvin relationship";
+  unit_data(153).value       = 3.1577504e5;
+  unit_data(153).uncertainty = 0.0000029e5;
+  unit_data(153).units       = "K";
+
+  unit_data(154).name        = "hartree-kilogram relationship";
+  unit_data(154).value       = 4.85086979e-35;
+  unit_data(154).uncertainty = 0.00000021e-35;
+  unit_data(154).units       = "kg";
+
+  unit_data(155).name        = "helion g factor";
+  unit_data(155).value       = -4.255250613;
+  unit_data(155).uncertainty = 0.000000050;
+  unit_data(155).units       = "";
+
+  unit_data(156).name        = "helion mag. mom.";
+  unit_data(156).value       = -1.074617486e-26;
+  unit_data(156).uncertainty = 0.000000027e-26;
+  unit_data(156).units       = "J T^-1";
+
+  unit_data(157).name        = "helion mag. mom. to Bohr magneton ratio";
+  unit_data(157).value       = -1.158740958e-3;
+  unit_data(157).uncertainty = 0.000000014e-3;
+  unit_data(157).units       = "";
+
+  unit_data(158).name        = "helion mag. mom. to nuclear magneton ratio";
+  unit_data(158).value       = -2.127625306;
+  unit_data(158).uncertainty = 0.000000025;
+  unit_data(158).units       = "";
+
+  unit_data(159).name        = "helion mass";
+  unit_data(159).value       = 5.00641234e-27;
+  unit_data(159).uncertainty = 0.00000022e-27;
+  unit_data(159).units       = "kg";
+
+  unit_data(160).name        = "helion mass energy equivalent";
+  unit_data(160).value       = 4.49953902e-10;
+  unit_data(160).uncertainty = 0.00000020e-10;
+  unit_data(160).units       = "J";
+
+  unit_data(161).name        = "helion mass energy equivalent in MeV";
+  unit_data(161).value       = 2808.391482;
+  unit_data(161).uncertainty = 0.000062;
+  unit_data(161).units       = "MeV";
+
+  unit_data(162).name        = "helion mass in u";
+  unit_data(162).value       = 3.0149322468;
+  unit_data(162).uncertainty = 0.0000000025;
+  unit_data(162).units       = "u";
+
+  unit_data(163).name        = "helion molar mass";
+  unit_data(163).value       = 3.0149322468e-3;
+  unit_data(163).uncertainty = 0.0000000025e-3;
+  unit_data(163).units       = "kg mol^-1";
+
+  unit_data(164).name        = "helion-electron mass ratio";
+  unit_data(164).value       = 5495.8852754;
+  unit_data(164).uncertainty = 0.0000050;
+  unit_data(164).units       = "";
+
+  unit_data(165).name        = "helion-proton mass ratio";
+  unit_data(165).value       = 2.9931526707;
+  unit_data(165).uncertainty = 0.0000000025;
+  unit_data(165).units       = "";
+
+  unit_data(166).name        = "hertz-atomic mass unit relationship";
+  unit_data(166).value       = 4.4398216689e-24;
+  unit_data(166).uncertainty = 0.0000000031e-24;
+  unit_data(166).units       = "u";
+
+  unit_data(167).name        = "hertz-electron volt relationship";
+  unit_data(167).value       = 4.135667516e-15;
+  unit_data(167).uncertainty = 0.000000091e-15;
+  unit_data(167).units       = "eV";
+
+  unit_data(168).name        = "hertz-hartree relationship";
+  unit_data(168).value       = 1.5198298460045e-16;
+  unit_data(168).uncertainty = 0.0000000000076e-16;
+  unit_data(168).units       = "E_h";
+
+  unit_data(169).name        = "hertz-inverse meter relationship";
+  unit_data(169).value       = 3.335640951e-9;
+  unit_data(169).uncertainty = 0.0;
+  unit_data(169).units       = "m^-1";
+
+  unit_data(170).name        = "hertz-joule relationship";
+  unit_data(170).value       = 6.62606957e-34;
+  unit_data(170).uncertainty = 0.00000029e-34;
+  unit_data(170).units       = "J";
+
+  unit_data(171).name        = "hertz-kelvin relationship";
+  unit_data(171).value       = 4.7992434e-11;
+  unit_data(171).uncertainty = 0.0000044e-11;
+  unit_data(171).units       = "K";
+
+  unit_data(172).name        = "hertz-kilogram relationship";
+  unit_data(172).value       = 7.37249668e-51;
+  unit_data(172).uncertainty = 0.00000033e-51;
+  unit_data(172).units       = "kg";
+
+  unit_data(173).name        = "inverse fine-structure constant";
+  unit_data(173).value       = 137.035999074;
+  unit_data(173).uncertainty = 0.000000044;
+  unit_data(173).units       = "";
+
+  unit_data(174).name        = "inverse meter-atomic mass unit relationship";
+  unit_data(174).value       = 1.33102505120e-15;
+  unit_data(174).uncertainty = 0.00000000094e-15;
+  unit_data(174).units       = "u";
+
+  unit_data(175).name        = "inverse meter-electron volt relationship";
+  unit_data(175).value       = 1.239841930e-6;
+  unit_data(175).uncertainty = 0.000000027e-6;
+  unit_data(175).units       = "eV";
+
+  unit_data(176).name        = "inverse meter-hartree relationship";
+  unit_data(176).value       = 4.556335252755e-8;
+  unit_data(176).uncertainty = 0.000000000023e-8;
+  unit_data(176).units       = "E_h";
+
+  unit_data(177).name        = "inverse meter-hertz relationship";
+  unit_data(177).value       = 299792458;
+  unit_data(177).uncertainty = 0.0;
+  unit_data(177).units       = "Hz";
+
+  unit_data(178).name        = "inverse meter-joule relationship";
+  unit_data(178).value       = 1.986445684e-25;
+  unit_data(178).uncertainty = 0.000000088e-25;
+  unit_data(178).units       = "J";
+
+  unit_data(179).name        = "inverse meter-kelvin relationship";
+  unit_data(179).value       = 1.4387770e-2;
+  unit_data(179).uncertainty = 0.0000013e-2;
+  unit_data(179).units       = "K";
+
+  unit_data(180).name        = "inverse meter-kilogram relationship";
+  unit_data(180).value       = 2.210218902e-42;
+  unit_data(180).uncertainty = 0.000000098e-42;
+  unit_data(180).units       = "kg";
+
+  unit_data(181).name        = "inverse of conductance quantum";
+  unit_data(181).value       = 12906.4037217;
+  unit_data(181).uncertainty = 0.0000042;
+  unit_data(181).units       = "ohm";
+
+  unit_data(182).name        = "joule-atomic mass unit relationship";
+  unit_data(182).value       = 6.70053585e9;
+  unit_data(182).uncertainty = 0.00000030e9;
+  unit_data(182).units       = "u";
+
+  unit_data(183).name        = "joule-electron volt relationship";
+  unit_data(183).value       = 6.24150934e18;
+  unit_data(183).uncertainty = 0.00000014e18;
+  unit_data(183).units       = "eV";
+
+  unit_data(184).name        = "joule-hartree relationship";
+  unit_data(184).value       = 2.29371248e17;
+  unit_data(184).uncertainty = 0.00000010e17;
+  unit_data(184).units       = "E_h";
+
+  unit_data(185).name        = "joule-hertz relationship";
+  unit_data(185).value       = 1.509190311e33;
+  unit_data(185).uncertainty = 0.000000067e33;
+  unit_data(185).units       = "Hz";
+
+  unit_data(186).name        = "joule-inverse meter relationship";
+  unit_data(186).value       = 5.03411701e24;
+  unit_data(186).uncertainty = 0.00000022e24;
+  unit_data(186).units       = "m^-1";
+
+  unit_data(187).name        = "joule-kelvin relationship";
+  unit_data(187).value       = 7.2429716e22;
+  unit_data(187).uncertainty = 0.0000066e22;
+  unit_data(187).units       = "K";
+
+  unit_data(188).name        = "joule-kilogram relationship";
+  unit_data(188).value       = 1.112650056e-17;
+  unit_data(188).uncertainty = 0.0;
+  unit_data(188).units       = "kg";
+
+  unit_data(189).name        = "kelvin-atomic mass unit relationship";
+  unit_data(189).value       = 9.2510868e-14;
+  unit_data(189).uncertainty = 0.0000084e-14;
+  unit_data(189).units       = "u";
+
+  unit_data(190).name        = "kelvin-electron volt relationship";
+  unit_data(190).value       = 8.6173324e-5;
+  unit_data(190).uncertainty = 0.0000078e-5;
+  unit_data(190).units       = "eV";
+
+  unit_data(191).name        = "kelvin-hartree relationship";
+  unit_data(191).value       = 3.1668114e-6;
+  unit_data(191).uncertainty = 0.0000029e-6;
+  unit_data(191).units       = "E_h";
+
+  unit_data(192).name        = "kelvin-hertz relationship";
+  unit_data(192).value       = 2.0836618e10;
+  unit_data(192).uncertainty = 0.0000019e10;
+  unit_data(192).units       = "Hz";
+
+  unit_data(193).name        = "kelvin-inverse meter relationship";
+  unit_data(193).value       = 69.503476;
+  unit_data(193).uncertainty = 0.000063;
+  unit_data(193).units       = "m^-1";
+
+  unit_data(194).name        = "kelvin-joule relationship";
+  unit_data(194).value       = 1.3806488e-23;
+  unit_data(194).uncertainty = 0.0000013e-23;
+  unit_data(194).units       = "J";
+
+  unit_data(195).name        = "kelvin-kilogram relationship";
+  unit_data(195).value       = 1.5361790e-40;
+  unit_data(195).uncertainty = 0.0000014e-40;
+  unit_data(195).units       = "kg";
+
+  unit_data(196).name        = "kilogram-atomic mass unit relationship";
+  unit_data(196).value       = 6.02214129e26;
+  unit_data(196).uncertainty = 0.00000027e26;
+  unit_data(196).units       = "u";
+
+  unit_data(197).name        = "kilogram-electron volt relationship";
+  unit_data(197).value       = 5.60958885e35;
+  unit_data(197).uncertainty = 0.00000012e35;
+  unit_data(197).units       = "eV";
+
+  unit_data(198).name        = "kilogram-hartree relationship";
+  unit_data(198).value       = 2.061485968e34;
+  unit_data(198).uncertainty = 0.000000091e34;
+  unit_data(198).units       = "E_h";
+
+  unit_data(199).name        = "kilogram-hertz relationship";
+  unit_data(199).value       = 1.356392608e50;
+  unit_data(199).uncertainty = 0.000000060e50;
+  unit_data(199).units       = "Hz";
+
+  unit_data(200).name        = "kilogram-inverse meter relationship";
+  unit_data(200).value       = 4.52443873e41;
+  unit_data(200).uncertainty = 0.00000020e41;
+  unit_data(200).units       = "m^-1";
+
+  unit_data(201).name        = "kilogram-joule relationship";
+  unit_data(201).value       = 8.987551787e16;
+  unit_data(201).uncertainty = 0.0;
+  unit_data(201).units       = "J";
+
+  unit_data(202).name        = "kilogram-kelvin relationship";
+  unit_data(202).value       = 6.5096582e39;
+  unit_data(202).uncertainty = 0.0000059e39;
+  unit_data(202).units       = "K";
+
+  unit_data(203).name        = "lattice parameter of silicon";
+  unit_data(203).value       = 543.1020504e-12;
+  unit_data(203).uncertainty = 0.0000089e-12;
+  unit_data(203).units       = "m";
+
+  unit_data(204).name        = "mag. constant";
+  unit_data(204).value       = 12.566370614e-7;
+  unit_data(204).uncertainty = 0.0;
+  unit_data(204).units       = "N A^-2";
+
+  unit_data(205).name        = "mag. flux quantum";
+  unit_data(205).value       = 2.067833758e-15;
+  unit_data(205).uncertainty = 0.000000046e-15;
+  unit_data(205).units       = "Wb";
+
+  unit_data(206).name        = "molar Planck constant";
+  unit_data(206).value       = 3.9903127176e-10;
+  unit_data(206).uncertainty = 0.0000000028e-10;
+  unit_data(206).units       = "J s mol^-1";
+
+  unit_data(207).name        = "molar Planck constant times c";
+  unit_data(207).value       = 0.119626565779;
+  unit_data(207).uncertainty = 0.000000000084;
+  unit_data(207).units       = "J m mol^-1";
+
+  unit_data(208).name        = "molar gas constant";
+  unit_data(208).value       = 8.3144621;
+  unit_data(208).uncertainty = 0.0000075;
+  unit_data(208).units       = "J mol^-1 K^-1";
+
+  unit_data(209).name        = "molar mass constant";
+  unit_data(209).value       = 1e-3;
+  unit_data(209).uncertainty = 0.0;
+  unit_data(209).units       = "kg mol^-1";
+
+  unit_data(210).name        = "molar mass of carbon-12";
+  unit_data(210).value       = 12e-3;
+  unit_data(210).uncertainty = 0.0;
+  unit_data(210).units       = "kg mol^-1";
+
+  unit_data(211).name        = "molar volume of ideal gas (273.15 K, 100 kPa)";
+  unit_data(211).value       = 22.710953e-3;
+  unit_data(211).uncertainty = 0.000021e-3;
+  unit_data(211).units       = "m^3 mol^-1";
+
+  unit_data(212).name        = "molar volume of ideal gas (273.15 K, 101.325 kPa)";
+  unit_data(212).value       = 22.413968e-3;
+  unit_data(212).uncertainty = 0.000020e-3;
+  unit_data(212).units       = "m^3 mol^-1";
+
+  unit_data(213).name        = "molar volume of silicon";
+  unit_data(213).value       = 12.05883301e-6;
+  unit_data(213).uncertainty = 0.00000080e-6;
+  unit_data(213).units       = "m^3 mol^-1";
+
+  unit_data(214).name        = "muon Compton wavelength";
+  unit_data(214).value       = 11.73444103e-15;
+  unit_data(214).uncertainty = 0.00000030e-15;
+  unit_data(214).units       = "m";
+
+  unit_data(215).name        = "muon Compton wavelength over 2 pi";
+  unit_data(215).value       = 1.867594294e-15;
+  unit_data(215).uncertainty = 0.000000047e-15;
+  unit_data(215).units       = "m";
+
+  unit_data(216).name        = "muon g factor";
+  unit_data(216).value       = -2.0023318418;
+  unit_data(216).uncertainty = 0.0000000013;
+  unit_data(216).units       = "";
+
+  unit_data(217).name        = "muon mag. mom.";
+  unit_data(217).value       = -4.49044807e-26;
+  unit_data(217).uncertainty = 0.00000015e-26;
+  unit_data(217).units       = "J T^-1";
+
+  unit_data(218).name        = "muon mag. mom. anomaly";
+  unit_data(218).value       = 1.16592091e-3;
+  unit_data(218).uncertainty = 0.00000063e-3;
+  unit_data(218).units       = "";
+
+  unit_data(219).name        = "muon mag. mom. to Bohr magneton ratio";
+  unit_data(219).value       = -4.84197044e-3;
+  unit_data(219).uncertainty = 0.00000012e-3;
+  unit_data(219).units       = "";
+
+  unit_data(220).name        = "muon mag. mom. to nuclear magneton ratio";
+  unit_data(220).value       = -8.89059697;
+  unit_data(220).uncertainty = 0.00000022;
+  unit_data(220).units       = "";
+
+  unit_data(221).name        = "muon mass";
+  unit_data(221).value       = 1.883531475e-28;
+  unit_data(221).uncertainty = 0.000000096e-28;
+  unit_data(221).units       = "kg";
+
+  unit_data(222).name        = "muon mass energy equivalent";
+  unit_data(222).value       = 1.692833667e-11;
+  unit_data(222).uncertainty = 0.000000086e-11;
+  unit_data(222).units       = "J";
+
+  unit_data(223).name        = "muon mass energy equivalent in MeV";
+  unit_data(223).value       = 105.6583715;
+  unit_data(223).uncertainty = 0.0000035;
+  unit_data(223).units       = "MeV";
+
+  unit_data(224).name        = "muon mass in u";
+  unit_data(224).value       = 0.1134289267;
+  unit_data(224).uncertainty = 0.0000000029;
+  unit_data(224).units       = "u";
+
+  unit_data(225).name        = "muon molar mass";
+  unit_data(225).value       = 0.1134289267e-3;
+  unit_data(225).uncertainty = 0.0000000029e-3;
+  unit_data(225).units       = "kg mol^-1";
+
+  unit_data(226).name        = "muon-electron mass ratio";
+  unit_data(226).value       = 206.7682843;
+  unit_data(226).uncertainty = 0.0000052;
+  unit_data(226).units       = "";
+
+  unit_data(227).name        = "muon-neutron mass ratio";
+  unit_data(227).value       = 0.1124545177;
+  unit_data(227).uncertainty = 0.0000000028;
+  unit_data(227).units       = "";
+
+  unit_data(228).name        = "muon-proton mag. mom. ratio";
+  unit_data(228).value       = -3.183345107;
+  unit_data(228).uncertainty = 0.000000084;
+  unit_data(228).units       = "";
+
+  unit_data(229).name        = "muon-proton mass ratio";
+  unit_data(229).value       = 0.1126095272;
+  unit_data(229).uncertainty = 0.0000000028;
+  unit_data(229).units       = "";
+
+  unit_data(230).name        = "muon-tau mass ratio";
+  unit_data(230).value       = 5.94649e-2;
+  unit_data(230).uncertainty = 0.00054e-2;
+  unit_data(230).units       = "";
+
+  unit_data(231).name        = "natural unit of action";
+  unit_data(231).value       = 1.054571726e-34;
+  unit_data(231).uncertainty = 0.000000047e-34;
+  unit_data(231).units       = "J s";
+
+  unit_data(232).name        = "natural unit of action in eV s";
+  unit_data(232).value       = 6.58211928e-16;
+  unit_data(232).uncertainty = 0.00000015e-16;
+  unit_data(232).units       = "eV s";
+
+  unit_data(233).name        = "natural unit of energy";
+  unit_data(233).value       = 8.18710506e-14;
+  unit_data(233).uncertainty = 0.00000036e-14;
+  unit_data(233).units       = "J";
+
+  unit_data(234).name        = "natural unit of energy in MeV";
+  unit_data(234).value       = 0.510998928;
+  unit_data(234).uncertainty = 0.000000011;
+  unit_data(234).units       = "MeV";
+
+  unit_data(235).name        = "natural unit of length";
+  unit_data(235).value       = 386.15926800e-15;
+  unit_data(235).uncertainty = 0.00000025e-15;
+  unit_data(235).units       = "m";
+
+  unit_data(236).name        = "natural unit of mass";
+  unit_data(236).value       = 9.10938291e-31;
+  unit_data(236).uncertainty = 0.00000040e-31;
+  unit_data(236).units       = "kg";
+
+  unit_data(237).name        = "natural unit of mom.um";
+  unit_data(237).value       = 2.73092429e-22;
+  unit_data(237).uncertainty = 0.00000012e-22;
+  unit_data(237).units       = "kg m s^-1";
+
+  unit_data(238).name        = "natural unit of mom.um in MeV/c";
+  unit_data(238).value       = 0.510998928;
+  unit_data(238).uncertainty = 0.000000011;
+  unit_data(238).units       = "MeV/c";
+
+  unit_data(239).name        = "natural unit of time";
+  unit_data(239).value       = 1.28808866833e-21;
+  unit_data(239).uncertainty = 0.00000000083e-21;
+  unit_data(239).units       = "s";
+
+  unit_data(240).name        = "natural unit of velocity";
+  unit_data(240).value       = 299792458;
+  unit_data(240).uncertainty = 0.0;
+  unit_data(240).units       = "m s^-1";
+
+  unit_data(241).name        = "neutron Compton wavelength";
+  unit_data(241).value       = 1.3195909068e-15;
+  unit_data(241).uncertainty = 0.0000000011e-15;
+  unit_data(241).units       = "m";
+
+  unit_data(242).name        = "neutron Compton wavelength over 2 pi";
+  unit_data(242).value       = 0.21001941568e-15;
+  unit_data(242).uncertainty = 0.00000000017e-15;
+  unit_data(242).units       = "m";
+
+  unit_data(243).name        = "neutron g factor";
+  unit_data(243).value       = -3.82608545;
+  unit_data(243).uncertainty = 0.00000090;
+  unit_data(243).units       = "";
+
+  unit_data(244).name        = "neutron gyromag. ratio";
+  unit_data(244).value       = 1.83247179e8;
+  unit_data(244).uncertainty = 0.00000043e8;
+  unit_data(244).units       = "s^-1 T^-1";
+
+  unit_data(245).name        = "neutron gyromag. ratio over 2 pi";
+  unit_data(245).value       = 29.1646943;
+  unit_data(245).uncertainty = 0.0000069;
+  unit_data(245).units       = "MHz T^-1";
+
+  unit_data(246).name        = "neutron mag. mom.";
+  unit_data(246).value       = -0.96623647e-26;
+  unit_data(246).uncertainty = 0.00000023e-26;
+  unit_data(246).units       = "J T^-1";
+
+  unit_data(247).name        = "neutron mag. mom. to Bohr magneton ratio";
+  unit_data(247).value       = -1.04187563e-3;
+  unit_data(247).uncertainty = 0.00000025e-3;
+  unit_data(247).units       = "";
+
+  unit_data(248).name        = "neutron mag. mom. to nuclear magneton ratio";
+  unit_data(248).value       = -1.91304272;
+  unit_data(248).uncertainty = 0.00000045;
+  unit_data(248).units       = "";
+
+  unit_data(249).name        = "neutron mass";
+  unit_data(249).value       = 1.674927351e-27;
+  unit_data(249).uncertainty = 0.000000074e-27;
+  unit_data(249).units       = "kg";
+
+  unit_data(250).name        = "neutron mass energy equivalent";
+  unit_data(250).value       = 1.505349631e-10;
+  unit_data(250).uncertainty = 0.000000066e-10;
+  unit_data(250).units       = "J";
+
+  unit_data(251).name        = "neutron mass energy equivalent in MeV";
+  unit_data(251).value       = 939.565379;
+  unit_data(251).uncertainty = 0.000021;
+  unit_data(251).units       = "MeV";
+
+  unit_data(252).name        = "neutron mass in u";
+  unit_data(252).value       = 1.00866491600;
+  unit_data(252).uncertainty = 0.00000000043;
+  unit_data(252).units       = "u";
+
+  unit_data(253).name        = "neutron molar mass";
+  unit_data(253).value       = 1.00866491600e-3;
+  unit_data(253).uncertainty = 0.00000000043e-3;
+  unit_data(253).units       = "kg mol^-1";
+
+  unit_data(254).name        = "neutron to shielded proton mag. mom. ratio";
+  unit_data(254).value       = -0.68499694;
+  unit_data(254).uncertainty = 0.00000016;
+  unit_data(254).units       = "";
+
+  unit_data(255).name        = "neutron-electron mag. mom. ratio";
+  unit_data(255).value       = 1.04066882e-3;
+  unit_data(255).uncertainty = 0.00000025e-3;
+  unit_data(255).units       = "";
+
+  unit_data(256).name        = "neutron-electron mass ratio";
+  unit_data(256).value       = 1838.6836605;
+  unit_data(256).uncertainty = 0.0000011;
+  unit_data(256).units       = "";
+
+  unit_data(257).name        = "neutron-muon mass ratio";
+  unit_data(257).value       = 8.89248400;
+  unit_data(257).uncertainty = 0.00000022;
+  unit_data(257).units       = "";
+
+  unit_data(258).name        = "neutron-proton mag. mom. ratio";
+  unit_data(258).value       = -0.68497934;
+  unit_data(258).uncertainty = 0.00000016;
+  unit_data(258).units       = "";
+
+  unit_data(259).name        = "neutron-proton mass difference";
+  unit_data(259).value       = 2.30557392e-30;
+  unit_data(259).uncertainty = 0.00000076e-30;
+  unit_data(259).units       = "";
+
+  unit_data(260).name        = "neutron-proton mass difference energy equivalent";
+  unit_data(260).value       = 2.07214650e-13;
+  unit_data(260).uncertainty = 0.00000068e-13;
+  unit_data(260).units       = "";
+
+  unit_data(261).name        = "neutron-proton mass difference energy equivalent in MeV";
+  unit_data(261).value       = 1.29333217;
+  unit_data(261).uncertainty = 0.00000042;
+  unit_data(261).units       = "";
+
+  unit_data(262).name        = "neutron-proton mass difference in u";
+  unit_data(262).value       = 0.00138844919;
+  unit_data(262).uncertainty = 0.00000000045;
+  unit_data(262).units       = "";
+
+  unit_data(263).name        = "neutron-proton mass ratio";
+  unit_data(263).value       = 1.00137841917;
+  unit_data(263).uncertainty = 0.00000000045;
+  unit_data(263).units       = "";
+
+  unit_data(264).name        = "neutron-tau mass ratio";
+  unit_data(264).value       = 0.528790;
+  unit_data(264).uncertainty = 0.000048;
+  unit_data(264).units       = "";
+
+  unit_data(265).name        = "nuclear magneton";
+  unit_data(265).value       = 5.05078353e-27;
+  unit_data(265).uncertainty = 0.00000011e-27;
+  unit_data(265).units       = "J T^-1";
+
+  unit_data(266).name        = "nuclear magneton in K/T";
+  unit_data(266).value       = 3.6582682e-4;
+  unit_data(266).uncertainty = 0.0000033e-4;
+  unit_data(266).units       = "K T^-1";
+
+  unit_data(267).name        = "nuclear magneton in MHz/T";
+  unit_data(267).value       = 7.62259357;
+  unit_data(267).uncertainty = 0.00000017;
+  unit_data(267).units       = "MHz T^-1";
+
+  unit_data(268).name        = "nuclear magneton in eV/T";
+  unit_data(268).value       = 3.1524512605e-8;
+  unit_data(268).uncertainty = 0.0000000022e-8;
+  unit_data(268).units       = "eV T^-1";
+
+  unit_data(269).name        = "nuclear magneton in inverse meters per tesla";
+  unit_data(269).value       = 2.542623527e-2;
+  unit_data(269).uncertainty = 0.000000056e-2;
+  unit_data(269).units       = "m^-1 T^-1";
+
+  unit_data(270).name        = "proton Compton wavelength";
+  unit_data(270).value       = 1.32140985623e-15;
+  unit_data(270).uncertainty = 0.00000000094e-15;
+  unit_data(270).units       = "m";
+
+  unit_data(271).name        = "proton Compton wavelength over 2 pi";
+  unit_data(271).value       = 0.21030891047e-15;
+  unit_data(271).uncertainty = 0.00000000015e-15;
+  unit_data(271).units       = "m";
+
+  unit_data(272).name        = "proton charge to mass quotient";
+  unit_data(272).value       = 9.57883358e7;
+  unit_data(272).uncertainty = 0.00000021e7;
+  unit_data(272).units       = "C kg^-1";
+
+  unit_data(273).name        = "proton g factor";
+  unit_data(273).value       = 5.585694713;
+  unit_data(273).uncertainty = 0.000000046;
+  unit_data(273).units       = "";
+
+  unit_data(274).name        = "proton gyromag. ratio";
+  unit_data(274).value       = 2.675222005e8;
+  unit_data(274).uncertainty = 0.000000063e8;
+  unit_data(274).units       = "s^-1 T^-1";
+
+  unit_data(275).name        = "proton gyromag. ratio over 2 pi";
+  unit_data(275).value       = 42.5774806;
+  unit_data(275).uncertainty = 0.0000010;
+  unit_data(275).units       = "MHz T^-1";
+
+  unit_data(276).name        = "proton mag. mom.";
+  unit_data(276).value       = 1.410606743e-26;
+  unit_data(276).uncertainty = 0.000000033e-26;
+  unit_data(276).units       = "J T^-1";
+
+  unit_data(277).name        = "proton mag. mom. to Bohr magneton ratio";
+  unit_data(277).value       = 1.521032210e-3;
+  unit_data(277).uncertainty = 0.000000012e-3;
+  unit_data(277).units       = "";
+
+  unit_data(278).name        = "proton mag. mom. to nuclear magneton ratio";
+  unit_data(278).value       = 2.792847356;
+  unit_data(278).uncertainty = 0.000000023;
+  unit_data(278).units       = "";
+
+  unit_data(279).name        = "proton mag. shielding correction";
+  unit_data(279).value       = 25.694e-6;
+  unit_data(279).uncertainty = 0.014e-6;
+  unit_data(279).units       = "";
+
+  unit_data(280).name        = "proton mass";
+  unit_data(280).value       = 1.672621777e-27;
+  unit_data(280).uncertainty = 0.000000074e-27;
+  unit_data(280).units       = "kg";
+
+  unit_data(281).name        = "proton mass energy equivalent";
+  unit_data(281).value       = 1.503277484e-10;
+  unit_data(281).uncertainty = 0.000000066e-10;
+  unit_data(281).units       = "J";
+
+  unit_data(282).name        = "proton mass energy equivalent in MeV";
+  unit_data(282).value       = 938.272046;
+  unit_data(282).uncertainty = 0.000021;
+  unit_data(282).units       = "MeV";
+
+  unit_data(283).name        = "proton mass in u";
+  unit_data(283).value       = 1.007276466812;
+  unit_data(283).uncertainty = 0.000000000090;
+  unit_data(283).units       = "u";
+
+  unit_data(284).name        = "proton molar mass";
+  unit_data(284).value       = 1.007276466812e-3;
+  unit_data(284).uncertainty = 0.000000000090e-3;
+  unit_data(284).units       = "kg mol^-1";
+
+  unit_data(285).name        = "proton rms charge radius";
+  unit_data(285).value       = 0.8775e-15;
+  unit_data(285).uncertainty = 0.0051e-15;
+  unit_data(285).units       = "m";
+
+  unit_data(286).name        = "proton-electron mass ratio";
+  unit_data(286).value       = 1836.15267245;
+  unit_data(286).uncertainty = 0.00000075;
+  unit_data(286).units       = "";
+
+  unit_data(287).name        = "proton-muon mass ratio";
+  unit_data(287).value       = 8.88024331;
+  unit_data(287).uncertainty = 0.00000022;
+  unit_data(287).units       = "";
+
+  unit_data(288).name        = "proton-neutron mag. mom. ratio";
+  unit_data(288).value       = -1.45989806;
+  unit_data(288).uncertainty = 0.00000034;
+  unit_data(288).units       = "";
+
+  unit_data(289).name        = "proton-neutron mass ratio";
+  unit_data(289).value       = 0.99862347826;
+  unit_data(289).uncertainty = 0.00000000045;
+  unit_data(289).units       = "";
+
+  unit_data(290).name        = "proton-tau mass ratio";
+  unit_data(290).value       = 0.528063;
+  unit_data(290).uncertainty = 0.000048;
+  unit_data(290).units       = "";
+
+  unit_data(291).name        = "quantum of circulation";
+  unit_data(291).value       = 3.6369475520e-4;
+  unit_data(291).uncertainty = 0.0000000024e-4;
+  unit_data(291).units       = "m^2 s^-1";
+
+  unit_data(292).name        = "quantum of circulation times 2";
+  unit_data(292).value       = 7.2738951040e-4;
+  unit_data(292).uncertainty = 0.0000000047e-4;
+  unit_data(292).units       = "m^2 s^-1";
+
+  unit_data(293).name        = "second radiation constant";
+  unit_data(293).value       = 1.4387770e-2;
+  unit_data(293).uncertainty = 0.0000013e-2;
+  unit_data(293).units       = "m K";
+
+  unit_data(294).name        = "shielded helion gyromag. ratio";
+  unit_data(294).value       = 2.037894659e8;
+  unit_data(294).uncertainty = 0.000000051e8;
+  unit_data(294).units       = "s^-1 T^-1";
+
+  unit_data(295).name        = "shielded helion gyromag. ratio over 2 pi";
+  unit_data(295).value       = 32.43410084;
+  unit_data(295).uncertainty = 0.00000081;
+  unit_data(295).units       = "MHz T^-1";
+
+  unit_data(296).name        = "shielded helion mag. mom.";
+  unit_data(296).value       = -1.074553044e-26;
+  unit_data(296).uncertainty = 0.000000027e-26;
+  unit_data(296).units       = "J T^-1";
+
+  unit_data(297).name        = "shielded helion mag. mom. to Bohr magneton ratio";
+  unit_data(297).value       = -1.158671471e-3;
+  unit_data(297).uncertainty = 0.000000014e-3;
+  unit_data(297).units       = "";
+
+  unit_data(298).name        = "shielded helion mag. mom. to nuclear magneton ratio";
+  unit_data(298).value       = -2.127497718;
+  unit_data(298).uncertainty = 0.000000025;
+  unit_data(298).units       = "";
+
+  unit_data(299).name        = "shielded helion to proton mag. mom. ratio";
+  unit_data(299).value       = -0.761766558;
+  unit_data(299).uncertainty = 0.000000011;
+  unit_data(299).units       = "";
+
+  unit_data(300).name        = "shielded helion to shielded proton mag. mom. ratio";
+  unit_data(300).value       = -0.7617861313;
+  unit_data(300).uncertainty = 0.0000000033;
+  unit_data(300).units       = "";
+
+  unit_data(301).name        = "shielded proton gyromag. ratio";
+  unit_data(301).value       = 2.675153268e8;
+  unit_data(301).uncertainty = 0.000000066e8;
+  unit_data(301).units       = "s^-1 T^-1";
+
+  unit_data(302).name        = "shielded proton gyromag. ratio over 2 pi";
+  unit_data(302).value       = 42.5763866;
+  unit_data(302).uncertainty = 0.0000010;
+  unit_data(302).units       = "MHz T^-1";
+
+  unit_data(303).name        = "shielded proton mag. mom.";
+  unit_data(303).value       = 1.410570499e-26;
+  unit_data(303).uncertainty = 0.000000035e-26;
+  unit_data(303).units       = "J T^-1";
+
+  unit_data(304).name        = "shielded proton mag. mom. to Bohr magneton ratio";
+  unit_data(304).value       = 1.520993128e-3;
+  unit_data(304).uncertainty = 0.000000017e-3;
+  unit_data(304).units       = "";
+
+  unit_data(305).name        = "shielded proton mag. mom. to nuclear magneton ratio";
+  unit_data(305).value       = 2.792775598;
+  unit_data(305).uncertainty = 0.000000030;
+  unit_data(305).units       = "";
+
+  unit_data(306).name        = "speed of light in vacuum";
+  unit_data(306).value       = 299792458;
+  unit_data(306).uncertainty = 0.0;
+  unit_data(306).units       = "m s^-1";
+
+  unit_data(307).name        = "standard acceleration of gravity";
+  unit_data(307).value       = 9.80665;
+  unit_data(307).uncertainty = 0.0;
+  unit_data(307).units       = "m s^-2";
+
+  unit_data(308).name        = "standard atmosphere";
+  unit_data(308).value       = 101325;
+  unit_data(308).uncertainty = 0.0;
+  unit_data(308).units       = "Pa";
+
+  unit_data(309).name        = "standard-state pressure";
+  unit_data(309).value       = 100000;
+  unit_data(309).uncertainty = 0.0;
+  unit_data(309).units       = "Pa";
+
+  unit_data(310).name        = "tau Compton wavelength";
+  unit_data(310).value       = 0.697787e-15;
+  unit_data(310).uncertainty = 0.000063e-15;
+  unit_data(310).units       = "m";
+
+  unit_data(311).name        = "tau Compton wavelength over 2 pi";
+  unit_data(311).value       = 0.111056e-15;
+  unit_data(311).uncertainty = 0.000010e-15;
+  unit_data(311).units       = "m";
+
+  unit_data(312).name        = "tau mass";
+  unit_data(312).value       = 3.16747e-27;
+  unit_data(312).uncertainty = 0.00029e-27;
+  unit_data(312).units       = "kg";
+
+  unit_data(313).name        = "tau mass energy equivalent";
+  unit_data(313).value       = 2.84678e-10;
+  unit_data(313).uncertainty = 0.00026e-10;
+  unit_data(313).units       = "J";
+
+  unit_data(314).name        = "tau mass energy equivalent in MeV";
+  unit_data(314).value       = 1776.82;
+  unit_data(314).uncertainty = 0.16;
+  unit_data(314).units       = "MeV";
+
+  unit_data(315).name        = "tau mass in u";
+  unit_data(315).value       = 1.90749;
+  unit_data(315).uncertainty = 0.00017;
+  unit_data(315).units       = "u";
+
+  unit_data(316).name        = "tau molar mass";
+  unit_data(316).value       = 1.90749e-3;
+  unit_data(316).uncertainty = 0.00017e-3;
+  unit_data(316).units       = "kg mol^-1";
+
+  unit_data(317).name        = "tau-electron mass ratio";
+  unit_data(317).value       = 3477.15;
+  unit_data(317).uncertainty = 0.31;
+  unit_data(317).units       = "";
+
+  unit_data(318).name        = "tau-muon mass ratio";
+  unit_data(318).value       = 16.8167;
+  unit_data(318).uncertainty = 0.0015;
+  unit_data(318).units       = "";
+
+  unit_data(319).name        = "tau-neutron mass ratio";
+  unit_data(319).value       = 1.89111;
+  unit_data(319).uncertainty = 0.00017;
+  unit_data(319).units       = "";
+
+  unit_data(320).name        = "tau-proton mass ratio";
+  unit_data(320).value       = 1.89372;
+  unit_data(320).uncertainty = 0.00017;
+  unit_data(320).units       = "";
+
+  unit_data(321).name        = "triton g factor";
+  unit_data(321).value       = 5.957924896;
+  unit_data(321).uncertainty = 0.000000076;
+  unit_data(321).units       = "";
+
+  unit_data(322).name        = "triton mag. mom.";
+  unit_data(322).value       = 1.504609447e-26;
+  unit_data(322).uncertainty = 0.000000038e-26;
+  unit_data(322).units       = "J T^-1";
+
+  unit_data(323).name        = "triton mag. mom. to Bohr magneton ratio";
+  unit_data(323).value       = 1.622393657e-3;
+  unit_data(323).uncertainty = 0.000000021e-3;
+  unit_data(323).units       = "";
+
+  unit_data(324).name        = "triton mag. mom. to nuclear magneton ratio";
+  unit_data(324).value       = 2.978962448;
+  unit_data(324).uncertainty = 0.000000038;
+  unit_data(324).units       = "";
+
+  unit_data(325).name        = "triton mass";
+  unit_data(325).value       = 5.00735630e-27;
+  unit_data(325).uncertainty = 0.00000022e-27;
+  unit_data(325).units       = "kg";
+
+  unit_data(326).name        = "triton mass energy equivalent";
+  unit_data(326).value       = 4.50038741e-10;
+  unit_data(326).uncertainty = 0.00000020e-10;
+  unit_data(326).units       = "J";
+
+  unit_data(327).name        = "triton mass energy equivalent in MeV";
+  unit_data(327).value       = 2808.921005;
+  unit_data(327).uncertainty = 0.000062;
+  unit_data(327).units       = "MeV";
+
+  unit_data(328).name        = "triton mass in u";
+  unit_data(328).value       = 3.0155007134;
+  unit_data(328).uncertainty = 0.0000000025;
+  unit_data(328).units       = "u";
+
+  unit_data(329).name        = "triton molar mass";
+  unit_data(329).value       = 3.0155007134e-3;
+  unit_data(329).uncertainty = 0.0000000025e-3;
+  unit_data(329).units       = "kg mol^-1";
+
+  unit_data(330).name        = "triton-electron mass ratio";
+  unit_data(330).value       = 5496.9215267;
+  unit_data(330).uncertainty = 0.0000050;
+  unit_data(330).units       = "";
+
+  unit_data(331).name        = "triton-proton mass ratio";
+  unit_data(331).value       = 2.9937170308;
+  unit_data(331).uncertainty = 0.0000000025;
+  unit_data(331).units       = "";
+
+  unit_data(332).name        = "unified atomic mass unit";
+  unit_data(332).value       = 1.660538921e-27;
+  unit_data(332).uncertainty = 0.000000073e-27;
+  unit_data(332).units       = "kg";
+
+  unit_data(333).name        = "von Klitzing constant";
+  unit_data(333).value       = 25812.8074434;
+  unit_data(333).uncertainty = 0.0000084;
+  unit_data(333).units       = "ohm";
+
+  unit_data(334).name        = "weak mixing angle";
+  unit_data(334).value       = 0.2223;
+  unit_data(334).uncertainty = 0.0021;
+  unit_data(334).units       = "";
+
+  unit_data(335).name        = "{220} lattice spacing of silicon";
+  unit_data(335).value       = 192.0155714e-12;
+  unit_data(335).uncertainty = 0.0000032e-12;
+  unit_data(335).units       = "m";
+
+endfunction
+%!assert(physical_constant("Angstrom star"), 1.00001495e-10);
+%!assert(physical_constant("Avogadro constant"), 6.02214129e23);
+%!assert(physical_constant("Bohr magneton"), 927.400968e-26);
+%!assert(physical_constant("Bohr magneton in Hz/T"), 13.99624555e9);
+%!assert(physical_constant("Bohr magneton in K/T"), 0.67171388);
+%!assert(physical_constant("Bohr magneton in eV/T"), 5.7883818066e-5);
+%!assert(physical_constant("Bohr magneton in inverse meters per tesla"), 46.6864498);
+%!assert(physical_constant("Bohr radius"), 0.52917721092e-10);
+%!assert(physical_constant("Boltzmann constant"), 1.3806488e-23);
+%!assert(physical_constant("Boltzmann constant in Hz/K"), 2.0836618e10);
+%!assert(physical_constant("Boltzmann constant in eV/K"), 8.6173324e-5);
+%!assert(physical_constant("Boltzmann constant in inverse meters per kelvin"), 69.503476);
+%!assert(physical_constant("Compton wavelength"), 2.4263102389e-12);
+%!assert(physical_constant("Compton wavelength over 2 pi"), 386.15926800e-15);
+%!assert(physical_constant("Cu x unit"), 1.00207697e-13);
+%!assert(physical_constant("Faraday constant"), 96485.3365);
+%!assert(physical_constant("Faraday constant for conventional electric current"), 96485.3321);
+%!assert(physical_constant("Fermi coupling constant"), 1.166364e-5);
+%!assert(physical_constant("Hartree energy"), 4.35974434e-18);
+%!assert(physical_constant("Hartree energy in eV"), 27.21138505);
+%!assert(physical_constant("Josephson constant"), 483597.870e9);
+%!assert(physical_constant("Loschmidt constant (273.15 K, 100 kPa)"), 2.6516462e25);
+%!assert(physical_constant("Loschmidt constant (273.15 K, 101.325 kPa)"), 2.6867805e25);
+%!assert(physical_constant("Mo x unit"), 1.00209952e-13);
+%!assert(physical_constant("Newtonian constant of gravitation"), 6.67384e-11);
+%!assert(physical_constant("Newtonian constant of gravitation over h-bar c"), 6.70837e-39);
+%!assert(physical_constant("Planck constant"), 6.62606957e-34);
+%!assert(physical_constant("Planck constant in eV s"), 4.135667516e-15);
+%!assert(physical_constant("Planck constant over 2 pi"), 1.054571726e-34);
+%!assert(physical_constant("Planck constant over 2 pi in eV s"), 6.58211928e-16);
+%!assert(physical_constant("Planck constant over 2 pi times c in MeV fm"), 197.3269718);
+%!assert(physical_constant("Planck length"), 1.616199e-35);
+%!assert(physical_constant("Planck mass"), 2.17651e-8);
+%!assert(physical_constant("Planck mass energy equivalent in GeV"), 1.220932e19);
+%!assert(physical_constant("Planck temperature"), 1.416833e32);
+%!assert(physical_constant("Planck time"), 5.39106e-44);
+%!assert(physical_constant("Rydberg constant"), 10973731.568539);
+%!assert(physical_constant("Rydberg constant times c in Hz"), 3.289841960364e15);
+%!assert(physical_constant("Rydberg constant times hc in J"), 2.179872171e-18);
+%!assert(physical_constant("Rydberg constant times hc in eV"), 13.60569253);
+%!assert(physical_constant("Sackur-Tetrode constant (1 K, 100 kPa)"), -1.1517078);
+%!assert(physical_constant("Sackur-Tetrode constant (1 K, 101.325 kPa)"), -1.1648708);
+%!assert(physical_constant("Stefan-Boltzmann constant"), 5.670373e-8);
+%!assert(physical_constant("Thomson cross section"), 0.6652458734e-28);
+%!assert(physical_constant("Wien frequency displacement law constant"), 5.8789254e10);
+%!assert(physical_constant("Wien wavelength displacement law constant"), 2.8977721e-3);
+%!assert(physical_constant("alpha particle mass"), 6.64465675e-27);
+%!assert(physical_constant("alpha particle mass energy equivalent"), 5.97191967e-10);
+%!assert(physical_constant("alpha particle mass energy equivalent in MeV"), 3727.379240);
+%!assert(physical_constant("alpha particle mass in u"), 4.001506179125);
+%!assert(physical_constant("alpha particle molar mass"), 4.001506179125e-3);
+%!assert(physical_constant("alpha particle-electron mass ratio"), 7294.2995361);
+%!assert(physical_constant("alpha particle-proton mass ratio"), 3.97259968933);
+%!assert(physical_constant("atomic mass constant"), 1.660538921e-27);
+%!assert(physical_constant("atomic mass constant energy equivalent"), 1.492417954e-10);
+%!assert(physical_constant("atomic mass constant energy equivalent in MeV"), 931.494061);
+%!assert(physical_constant("atomic mass unit-electron volt relationship"), 931.494061e6);
+%!assert(physical_constant("atomic mass unit-hartree relationship"), 3.4231776845e7);
+%!assert(physical_constant("atomic mass unit-hertz relationship"), 2.2523427168e23);
+%!assert(physical_constant("atomic mass unit-inverse meter relationship"), 7.5130066042e14);
+%!assert(physical_constant("atomic mass unit-joule relationship"), 1.492417954e-10);
+%!assert(physical_constant("atomic mass unit-kelvin relationship"), 1.08095408e13);
+%!assert(physical_constant("atomic mass unit-kilogram relationship"), 1.660538921e-27);
+%!assert(physical_constant("atomic unit of 1st hyperpolarizability"), 3.206361449e-53);
+%!assert(physical_constant("atomic unit of 2nd hyperpolarizability"), 6.23538054e-65);
+%!assert(physical_constant("atomic unit of action"), 1.054571726e-34);
+%!assert(physical_constant("atomic unit of charge"), 1.602176565e-19);
+%!assert(physical_constant("atomic unit of charge density"), 1.081202338e12);
+%!assert(physical_constant("atomic unit of current"), 6.62361795e-3);
+%!assert(physical_constant("atomic unit of electric dipole mom."), 8.47835326e-30);
+%!assert(physical_constant("atomic unit of electric field"), 5.14220652e11);
+%!assert(physical_constant("atomic unit of electric field gradient"), 9.71736200e21);
+%!assert(physical_constant("atomic unit of electric polarizability"), 1.6487772754e-41);
+%!assert(physical_constant("atomic unit of electric potential"), 27.21138505);
+%!assert(physical_constant("atomic unit of electric quadrupole mom."), 4.486551331e-40);
+%!assert(physical_constant("atomic unit of energy"), 4.35974434e-18);
+%!assert(physical_constant("atomic unit of force"), 8.23872278e-8);
+%!assert(physical_constant("atomic unit of length"), 0.52917721092e-10);
+%!assert(physical_constant("atomic unit of mag. dipole mom."), 1.854801936e-23);
+%!assert(physical_constant("atomic unit of mag. flux density"), 2.350517464e5);
+%!assert(physical_constant("atomic unit of magnetizability"), 7.891036607e-29);
+%!assert(physical_constant("atomic unit of mass"), 9.10938291e-31);
+%!assert(physical_constant("atomic unit of mom.um"), 1.992851740e-24);
+%!assert(physical_constant("atomic unit of permittivity"), 1.112650056e-10);
+%!assert(physical_constant("atomic unit of time"), 2.418884326502e-17);
+%!assert(physical_constant("atomic unit of velocity"), 2.18769126379e6);
+%!assert(physical_constant("characteristic impedance of vacuum"), 376.730313461);
+%!assert(physical_constant("classical electron radius"), 2.8179403267e-15);
+%!assert(physical_constant("conductance quantum"), 7.7480917346e-5);
+%!assert(physical_constant("conventional value of Josephson constant"), 483597.9e9);
+%!assert(physical_constant("conventional value of von Klitzing constant"), 25812.807);
+%!assert(physical_constant("deuteron g factor"), 0.8574382308);
+%!assert(physical_constant("deuteron mag. mom."), 0.433073489e-26);
+%!assert(physical_constant("deuteron mag. mom. to Bohr magneton ratio"), 0.4669754556e-3);
+%!assert(physical_constant("deuteron mag. mom. to nuclear magneton ratio"), 0.8574382308);
+%!assert(physical_constant("deuteron mass"), 3.34358348e-27);
+%!assert(physical_constant("deuteron mass energy equivalent"), 3.00506297e-10);
+%!assert(physical_constant("deuteron mass energy equivalent in MeV"), 1875.612859);
+%!assert(physical_constant("deuteron mass in u"), 2.013553212712);
+%!assert(physical_constant("deuteron molar mass"), 2.013553212712e-3);
+%!assert(physical_constant("deuteron rms charge radius"), 2.1424e-15);
+%!assert(physical_constant("deuteron-electron mag. mom. ratio"), -4.664345537e-4);
+%!assert(physical_constant("deuteron-electron mass ratio"), 3670.4829652);
+%!assert(physical_constant("deuteron-neutron mag. mom. ratio"), -0.44820652);
+%!assert(physical_constant("deuteron-proton mag. mom. ratio"), 0.3070122070);
+%!assert(physical_constant("deuteron-proton mass ratio"), 1.99900750097);
+%!assert(physical_constant("electric constant"), 8.854187817e-12);
+%!assert(physical_constant("electron charge to mass quotient"), -1.758820088e11);
+%!assert(physical_constant("electron g factor"), -2.00231930436153);
+%!assert(physical_constant("electron gyromag. ratio"), 1.760859708e11);
+%!assert(physical_constant("electron gyromag. ratio over 2 pi"), 28024.95266);
+%!assert(physical_constant("electron mag. mom."), -928.476430e-26);
+%!assert(physical_constant("electron mag. mom. anomaly"), 1.15965218076e-3);
+%!assert(physical_constant("electron mag. mom. to Bohr magneton ratio"), -1.00115965218076);
+%!assert(physical_constant("electron mag. mom. to nuclear magneton ratio"), -1838.28197090);
+%!assert(physical_constant("electron mass"), 9.10938291e-31);
+%!assert(physical_constant("electron mass energy equivalent"), 8.18710506e-14);
+%!assert(physical_constant("electron mass energy equivalent in MeV"), 0.510998928);
+%!assert(physical_constant("electron mass in u"), 5.4857990946e-4);
+%!assert(physical_constant("electron molar mass"), 5.4857990946e-7);
+%!assert(physical_constant("electron to alpha particle mass ratio"), 1.37093355578e-4);
+%!assert(physical_constant("electron to shielded helion mag. mom. ratio"), 864.058257);
+%!assert(physical_constant("electron to shielded proton mag. mom. ratio"), -658.2275971);
+%!assert(physical_constant("electron volt"), 1.602176565e-19);
+%!assert(physical_constant("electron volt-atomic mass unit relationship"), 1.073544150e-9);
+%!assert(physical_constant("electron volt-hartree relationship"), 3.674932379e-2);
+%!assert(physical_constant("electron volt-hertz relationship"), 2.417989348e14);
+%!assert(physical_constant("electron volt-inverse meter relationship"), 8.06554429e5);
+%!assert(physical_constant("electron volt-joule relationship"), 1.602176565e-19);
+%!assert(physical_constant("electron volt-kelvin relationship"), 1.1604519e4);
+%!assert(physical_constant("electron volt-kilogram relationship"), 1.782661845e-36);
+%!assert(physical_constant("electron-deuteron mag. mom. ratio"), -2143.923498);
+%!assert(physical_constant("electron-deuteron mass ratio"), 2.7244371095e-4);
+%!assert(physical_constant("electron-helion mass ratio"), 1.8195430761e-4);
+%!assert(physical_constant("electron-muon mag. mom. ratio"), 206.7669896);
+%!assert(physical_constant("electron-muon mass ratio"), 4.83633166e-3);
+%!assert(physical_constant("electron-neutron mag. mom. ratio"), 960.92050);
+%!assert(physical_constant("electron-neutron mass ratio"), 5.4386734461e-4);
+%!assert(physical_constant("electron-proton mag. mom. ratio"), -658.2106848);
+%!assert(physical_constant("electron-proton mass ratio"), 5.4461702178e-4);
+%!assert(physical_constant("electron-tau mass ratio"), 2.87592e-4);
+%!assert(physical_constant("electron-triton mass ratio"), 1.8192000653e-4);
+%!assert(physical_constant("elementary charge"), 1.602176565e-19);
+%!assert(physical_constant("elementary charge over h"), 2.417989348e14);
+%!assert(physical_constant("fine-structure constant"), 7.2973525698e-3);
+%!assert(physical_constant("first radiation constant"), 3.74177153e-16);
+%!assert(physical_constant("first radiation constant for spectral radiance"), 1.191042869e-16);
+%!assert(physical_constant("hartree-atomic mass unit relationship"), 2.9212623246e-8);
+%!assert(physical_constant("hartree-electron volt relationship"), 27.21138505);
+%!assert(physical_constant("hartree-hertz relationship"), 6.579683920729e15);
+%!assert(physical_constant("hartree-inverse meter relationship"), 2.194746313708e7);
+%!assert(physical_constant("hartree-joule relationship"), 4.35974434e-18);
+%!assert(physical_constant("hartree-kelvin relationship"), 3.1577504e5);
+%!assert(physical_constant("hartree-kilogram relationship"), 4.85086979e-35);
+%!assert(physical_constant("helion g factor"), -4.255250613);
+%!assert(physical_constant("helion mag. mom."), -1.074617486e-26);
+%!assert(physical_constant("helion mag. mom. to Bohr magneton ratio"), -1.158740958e-3);
+%!assert(physical_constant("helion mag. mom. to nuclear magneton ratio"), -2.127625306);
+%!assert(physical_constant("helion mass"), 5.00641234e-27);
+%!assert(physical_constant("helion mass energy equivalent"), 4.49953902e-10);
+%!assert(physical_constant("helion mass energy equivalent in MeV"), 2808.391482);
+%!assert(physical_constant("helion mass in u"), 3.0149322468);
+%!assert(physical_constant("helion molar mass"), 3.0149322468e-3);
+%!assert(physical_constant("helion-electron mass ratio"), 5495.8852754);
+%!assert(physical_constant("helion-proton mass ratio"), 2.9931526707);
+%!assert(physical_constant("hertz-atomic mass unit relationship"), 4.4398216689e-24);
+%!assert(physical_constant("hertz-electron volt relationship"), 4.135667516e-15);
+%!assert(physical_constant("hertz-hartree relationship"), 1.5198298460045e-16);
+%!assert(physical_constant("hertz-inverse meter relationship"), 3.335640951e-9);
+%!assert(physical_constant("hertz-joule relationship"), 6.62606957e-34);
+%!assert(physical_constant("hertz-kelvin relationship"), 4.7992434e-11);
+%!assert(physical_constant("hertz-kilogram relationship"), 7.37249668e-51);
+%!assert(physical_constant("inverse fine-structure constant"), 137.035999074);
+%!assert(physical_constant("inverse meter-atomic mass unit relationship"), 1.33102505120e-15);
+%!assert(physical_constant("inverse meter-electron volt relationship"), 1.239841930e-6);
+%!assert(physical_constant("inverse meter-hartree relationship"), 4.556335252755e-8);
+%!assert(physical_constant("inverse meter-hertz relationship"), 299792458);
+%!assert(physical_constant("inverse meter-joule relationship"), 1.986445684e-25);
+%!assert(physical_constant("inverse meter-kelvin relationship"), 1.4387770e-2);
+%!assert(physical_constant("inverse meter-kilogram relationship"), 2.210218902e-42);
+%!assert(physical_constant("inverse of conductance quantum"), 12906.4037217);
+%!assert(physical_constant("joule-atomic mass unit relationship"), 6.70053585e9);
+%!assert(physical_constant("joule-electron volt relationship"), 6.24150934e18);
+%!assert(physical_constant("joule-hartree relationship"), 2.29371248e17);
+%!assert(physical_constant("joule-hertz relationship"), 1.509190311e33);
+%!assert(physical_constant("joule-inverse meter relationship"), 5.03411701e24);
+%!assert(physical_constant("joule-kelvin relationship"), 7.2429716e22);
+%!assert(physical_constant("joule-kilogram relationship"), 1.112650056e-17);
+%!assert(physical_constant("kelvin-atomic mass unit relationship"), 9.2510868e-14);
+%!assert(physical_constant("kelvin-electron volt relationship"), 8.6173324e-5);
+%!assert(physical_constant("kelvin-hartree relationship"), 3.1668114e-6);
+%!assert(physical_constant("kelvin-hertz relationship"), 2.0836618e10);
+%!assert(physical_constant("kelvin-inverse meter relationship"), 69.503476);
+%!assert(physical_constant("kelvin-joule relationship"), 1.3806488e-23);
+%!assert(physical_constant("kelvin-kilogram relationship"), 1.5361790e-40);
+%!assert(physical_constant("kilogram-atomic mass unit relationship"), 6.02214129e26);
+%!assert(physical_constant("kilogram-electron volt relationship"), 5.60958885e35);
+%!assert(physical_constant("kilogram-hartree relationship"), 2.061485968e34);
+%!assert(physical_constant("kilogram-hertz relationship"), 1.356392608e50);
+%!assert(physical_constant("kilogram-inverse meter relationship"), 4.52443873e41);
+%!assert(physical_constant("kilogram-joule relationship"), 8.987551787e16);
+%!assert(physical_constant("kilogram-kelvin relationship"), 6.5096582e39);
+%!assert(physical_constant("lattice parameter of silicon"), 543.1020504e-12);
+%!assert(physical_constant("mag. constant"), 12.566370614e-7);
+%!assert(physical_constant("mag. flux quantum"), 2.067833758e-15);
+%!assert(physical_constant("molar Planck constant"), 3.9903127176e-10);
+%!assert(physical_constant("molar Planck constant times c"), 0.119626565779);
+%!assert(physical_constant("molar gas constant"), 8.3144621);
+%!assert(physical_constant("molar mass constant"), 1e-3);
+%!assert(physical_constant("molar mass of carbon-12"), 12e-3);
+%!assert(physical_constant("molar volume of ideal gas (273.15 K, 100 kPa)"), 22.710953e-3);
+%!assert(physical_constant("molar volume of ideal gas (273.15 K, 101.325 kPa)"), 22.413968e-3);
+%!assert(physical_constant("molar volume of silicon"), 12.05883301e-6);
+%!assert(physical_constant("muon Compton wavelength"), 11.73444103e-15);
+%!assert(physical_constant("muon Compton wavelength over 2 pi"), 1.867594294e-15);
+%!assert(physical_constant("muon g factor"), -2.0023318418);
+%!assert(physical_constant("muon mag. mom."), -4.49044807e-26);
+%!assert(physical_constant("muon mag. mom. anomaly"), 1.16592091e-3);
+%!assert(physical_constant("muon mag. mom. to Bohr magneton ratio"), -4.84197044e-3);
+%!assert(physical_constant("muon mag. mom. to nuclear magneton ratio"), -8.89059697);
+%!assert(physical_constant("muon mass"), 1.883531475e-28);
+%!assert(physical_constant("muon mass energy equivalent"), 1.692833667e-11);
+%!assert(physical_constant("muon mass energy equivalent in MeV"), 105.6583715);
+%!assert(physical_constant("muon mass in u"), 0.1134289267);
+%!assert(physical_constant("muon molar mass"), 0.1134289267e-3);
+%!assert(physical_constant("muon-electron mass ratio"), 206.7682843);
+%!assert(physical_constant("muon-neutron mass ratio"), 0.1124545177);
+%!assert(physical_constant("muon-proton mag. mom. ratio"), -3.183345107);
+%!assert(physical_constant("muon-proton mass ratio"), 0.1126095272);
+%!assert(physical_constant("muon-tau mass ratio"), 5.94649e-2);
+%!assert(physical_constant("natural unit of action"), 1.054571726e-34);
+%!assert(physical_constant("natural unit of action in eV s"), 6.58211928e-16);
+%!assert(physical_constant("natural unit of energy"), 8.18710506e-14);
+%!assert(physical_constant("natural unit of energy in MeV"), 0.510998928);
+%!assert(physical_constant("natural unit of length"), 386.15926800e-15);
+%!assert(physical_constant("natural unit of mass"), 9.10938291e-31);
+%!assert(physical_constant("natural unit of mom.um"), 2.73092429e-22);
+%!assert(physical_constant("natural unit of mom.um in MeV/c"), 0.510998928);
+%!assert(physical_constant("natural unit of time"), 1.28808866833e-21);
+%!assert(physical_constant("natural unit of velocity"), 299792458);
+%!assert(physical_constant("neutron Compton wavelength"), 1.3195909068e-15);
+%!assert(physical_constant("neutron Compton wavelength over 2 pi"), 0.21001941568e-15);
+%!assert(physical_constant("neutron g factor"), -3.82608545);
+%!assert(physical_constant("neutron gyromag. ratio"), 1.83247179e8);
+%!assert(physical_constant("neutron gyromag. ratio over 2 pi"), 29.1646943);
+%!assert(physical_constant("neutron mag. mom."), -0.96623647e-26);
+%!assert(physical_constant("neutron mag. mom. to Bohr magneton ratio"), -1.04187563e-3);
+%!assert(physical_constant("neutron mag. mom. to nuclear magneton ratio"), -1.91304272);
+%!assert(physical_constant("neutron mass"), 1.674927351e-27);
+%!assert(physical_constant("neutron mass energy equivalent"), 1.505349631e-10);
+%!assert(physical_constant("neutron mass energy equivalent in MeV"), 939.565379);
+%!assert(physical_constant("neutron mass in u"), 1.00866491600);
+%!assert(physical_constant("neutron molar mass"), 1.00866491600e-3);
+%!assert(physical_constant("neutron to shielded proton mag. mom. ratio"), -0.68499694);
+%!assert(physical_constant("neutron-electron mag. mom. ratio"), 1.04066882e-3);
+%!assert(physical_constant("neutron-electron mass ratio"), 1838.6836605);
+%!assert(physical_constant("neutron-muon mass ratio"), 8.89248400);
+%!assert(physical_constant("neutron-proton mag. mom. ratio"), -0.68497934);
+%!assert(physical_constant("neutron-proton mass difference"), 2.30557392e-30);
+%!assert(physical_constant("neutron-proton mass difference energy equivalent"), 2.07214650e-13);
+%!assert(physical_constant("neutron-proton mass difference energy equivalent in MeV"), 1.29333217);
+%!assert(physical_constant("neutron-proton mass difference in u"), 0.00138844919);
+%!assert(physical_constant("neutron-proton mass ratio"), 1.00137841917);
+%!assert(physical_constant("neutron-tau mass ratio"), 0.528790);
+%!assert(physical_constant("nuclear magneton"), 5.05078353e-27);
+%!assert(physical_constant("nuclear magneton in K/T"), 3.6582682e-4);
+%!assert(physical_constant("nuclear magneton in MHz/T"), 7.62259357);
+%!assert(physical_constant("nuclear magneton in eV/T"), 3.1524512605e-8);
+%!assert(physical_constant("nuclear magneton in inverse meters per tesla"), 2.542623527e-2);
+%!assert(physical_constant("proton Compton wavelength"), 1.32140985623e-15);
+%!assert(physical_constant("proton Compton wavelength over 2 pi"), 0.21030891047e-15);
+%!assert(physical_constant("proton charge to mass quotient"), 9.57883358e7);
+%!assert(physical_constant("proton g factor"), 5.585694713);
+%!assert(physical_constant("proton gyromag. ratio"), 2.675222005e8);
+%!assert(physical_constant("proton gyromag. ratio over 2 pi"), 42.5774806);
+%!assert(physical_constant("proton mag. mom."), 1.410606743e-26);
+%!assert(physical_constant("proton mag. mom. to Bohr magneton ratio"), 1.521032210e-3);
+%!assert(physical_constant("proton mag. mom. to nuclear magneton ratio"), 2.792847356);
+%!assert(physical_constant("proton mag. shielding correction"), 25.694e-6);
+%!assert(physical_constant("proton mass"), 1.672621777e-27);
+%!assert(physical_constant("proton mass energy equivalent"), 1.503277484e-10);
+%!assert(physical_constant("proton mass energy equivalent in MeV"), 938.272046);
+%!assert(physical_constant("proton mass in u"), 1.007276466812);
+%!assert(physical_constant("proton molar mass"), 1.007276466812e-3);
+%!assert(physical_constant("proton rms charge radius"), 0.8775e-15);
+%!assert(physical_constant("proton-electron mass ratio"), 1836.15267245);
+%!assert(physical_constant("proton-muon mass ratio"), 8.88024331);
+%!assert(physical_constant("proton-neutron mag. mom. ratio"), -1.45989806);
+%!assert(physical_constant("proton-neutron mass ratio"), 0.99862347826);
+%!assert(physical_constant("proton-tau mass ratio"), 0.528063);
+%!assert(physical_constant("quantum of circulation"), 3.6369475520e-4);
+%!assert(physical_constant("quantum of circulation times 2"), 7.2738951040e-4);
+%!assert(physical_constant("second radiation constant"), 1.4387770e-2);
+%!assert(physical_constant("shielded helion gyromag. ratio"), 2.037894659e8);
+%!assert(physical_constant("shielded helion gyromag. ratio over 2 pi"), 32.43410084);
+%!assert(physical_constant("shielded helion mag. mom."), -1.074553044e-26);
+%!assert(physical_constant("shielded helion mag. mom. to Bohr magneton ratio"), -1.158671471e-3);
+%!assert(physical_constant("shielded helion mag. mom. to nuclear magneton ratio"), -2.127497718);
+%!assert(physical_constant("shielded helion to proton mag. mom. ratio"), -0.761766558);
+%!assert(physical_constant("shielded helion to shielded proton mag. mom. ratio"), -0.7617861313);
+%!assert(physical_constant("shielded proton gyromag. ratio"), 2.675153268e8);
+%!assert(physical_constant("shielded proton gyromag. ratio over 2 pi"), 42.5763866);
+%!assert(physical_constant("shielded proton mag. mom."), 1.410570499e-26);
+%!assert(physical_constant("shielded proton mag. mom. to Bohr magneton ratio"), 1.520993128e-3);
+%!assert(physical_constant("shielded proton mag. mom. to nuclear magneton ratio"), 2.792775598);
+%!assert(physical_constant("speed of light in vacuum"), 299792458);
+%!assert(physical_constant("standard acceleration of gravity"), 9.80665);
+%!assert(physical_constant("standard atmosphere"), 101325);
+%!assert(physical_constant("standard-state pressure"), 100000);
+%!assert(physical_constant("tau Compton wavelength"), 0.697787e-15);
+%!assert(physical_constant("tau Compton wavelength over 2 pi"), 0.111056e-15);
+%!assert(physical_constant("tau mass"), 3.16747e-27);
+%!assert(physical_constant("tau mass energy equivalent"), 2.84678e-10);
+%!assert(physical_constant("tau mass energy equivalent in MeV"), 1776.82);
+%!assert(physical_constant("tau mass in u"), 1.90749);
+%!assert(physical_constant("tau molar mass"), 1.90749e-3);
+%!assert(physical_constant("tau-electron mass ratio"), 3477.15);
+%!assert(physical_constant("tau-muon mass ratio"), 16.8167);
+%!assert(physical_constant("tau-neutron mass ratio"), 1.89111);
+%!assert(physical_constant("tau-proton mass ratio"), 1.89372);
+%!assert(physical_constant("triton g factor"), 5.957924896);
+%!assert(physical_constant("triton mag. mom."), 1.504609447e-26);
+%!assert(physical_constant("triton mag. mom. to Bohr magneton ratio"), 1.622393657e-3);
+%!assert(physical_constant("triton mag. mom. to nuclear magneton ratio"), 2.978962448);
+%!assert(physical_constant("triton mass"), 5.00735630e-27);
+%!assert(physical_constant("triton mass energy equivalent"), 4.50038741e-10);
+%!assert(physical_constant("triton mass energy equivalent in MeV"), 2808.921005);
+%!assert(physical_constant("triton mass in u"), 3.0155007134);
+%!assert(physical_constant("triton molar mass"), 3.0155007134e-3);
+%!assert(physical_constant("triton-electron mass ratio"), 5496.9215267);
+%!assert(physical_constant("triton-proton mass ratio"), 2.9937170308);
+%!assert(physical_constant("unified atomic mass unit"), 1.660538921e-27);
+%!assert(physical_constant("von Klitzing constant"), 25812.8074434);
+%!assert(physical_constant("weak mixing angle"), 0.2223);
+%!assert(physical_constant("{220} lattice spacing of silicon"), 192.0155714e-12);
miscellaneous/NEWS to inst/rolldices.m
--- a/miscellaneous/NEWS
+++ b/inst/rolldices.m
@@ -1,84 +1,81 @@
-Summary of important user-visible changes for the miscellaneous package
-------------------------------------------------------------------------
-===============================================================================
-miscellaneous-1.X.X   Release Date: 201X-XX-XX  Release Manager:
-===============================================================================
+## Copyright (C) 2009 Jaroslav Hajek <highegg@gmail.com>
+##
+## This program is free software; you can redistribute it and/or modify it under
+## the terms of the GNU General Public License as published by the Free Software
+## Foundation; either version 3 of the License, or (at your option) any later
+## version.
+##
+## This program is distributed in the hope that it will be useful, but WITHOUT
+## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+## details.
+##
+## You should have received a copy of the GNU General Public License along with
+## this program; if not, see <http://www.gnu.org/licenses/>.
 
- ** The following functions have been deprecated in previous releases
-    of the miscellaneous package and have now been removed:
+## -*- texinfo -*-
+## @deftypefn{Function File} rolldices (@var{n})
+## @deftypefnx{Function File} rolldices (@var{n}, @var{nrep}, @var{delay})
+## Returns @var{n} random numbers from the 1:6 range, displaying a visual selection
+## effect.
+##
+## @var{nrep} sets the number of rolls, @var{delay} specifies time between
+## successive rolls in seconds. Default is nrep = 25 and delay = 0.1.
+##
+## Requires a terminal with ANSI escape sequences enabled.
+## @end deftypefn
 
-      apply       map         partarray   temp_name
+function numbers = rolldices (n, nrep = 25, delay = .1)
+  if (nargin != 1)
+    print_usage ();
+  endif
 
- ** units is now able to perform non-linear unit conversions such as conversion
-    between Fahrenheit and Celsius.
+  persistent matrices = getmatrices ();
 
-===============================================================================
-miscellaneous-1.2.0   Release Date: 2012-10-16  Release Manager: Carn�� Draug
-===============================================================================
- ** New functions:
-   truncate: truncates a number to a given precision.
-   textable: create LaTeX tables from matrix
+  screen_cols = getenv ("COLUMNS");
+  if (isempty (screen_cols))
+    screen_cols = 80;
+  else
+    screen_cols = str2num (screen_cols);
+  endif
 
- ** The following functions have been imported from the combinatorics
-    package which has been removed:
+  dices_per_row = floor ((screen_cols-1) / 7);
 
-      partcnt     partint
+  oldpso = page_screen_output (0);
 
- ** The function `physical_constant' has been imported from the
-    physicalconstants package.
+  numbers = [];
 
- ** The values returned by `physical_constant' have been adjusted to the
-    latest (2010) recommended values by CODATA.
+  unwind_protect
+    while (n > 0)
+      m = min (n, dices_per_row);
+      for i = 1:nrep
+        if (i > 1)
+          puts (char ([27, 91, 51, 70])); 
+          sleep (delay);
+        endif
+        nums = ceil (6 * rand (1, m));
+        disp (matrices(:,:,nums)(:,:));
+      endfor
+      numbers = [numbers, nums];
+      n -= m;
+      puts ("\n");
+    endwhile
+  unwind_protect_cleanup
+    page_screen_output (oldpso);
+  end_unwind_protect
 
- ** The function `physical_constant' has a new API and should also
-    perform faster.
+endfunction
 
- ** Package is now dependent on the general (>= 1.3.1)
+function matrices = getmatrices ()
+  lbrk = [27, 91, 55, 109](ones (1, 3), :);
+  rbrk = [27, 91, 50, 55, 109](ones (1, 3), :);
+  spcs = [32, 32; 32, 32; 32, 32];
+  dchrs = reshape(
+  ["     @    @    @   @@   @@   @";
+   "  @         @         @  @   @";
+   "         @    @@   @@   @@   @"], [3, 5, 6]);
 
-===============================================================================
-miscellaneous-1.1.0   Release Date: 2012-03-24  Release Manager: Carn�� Draug
-===============================================================================
-
- ** IMPORTANT NOTE:
-    * the function `waitbar' has been renamed `text_waitbar'. Octave core has
-      implemented a Matlab compatible `waitbar' which is imcompatible with the
-      old miscellaneous `waitbar'. If you use the `waitbar' function from the
-      miscellaneous package you have 3 options:
-        1. replace all `waitbar' calls by `text_waitbar';
-        2. fix your `waitbar' calls for the new API as per octave core. Note
-           that `waitbar' is graphical tool only;
-        3. use an old version of the miscellaneous package or modify the source
-           to keep shadowing the octave core `waitbar'.
-
- ** The following functions are new:
-
-      clip      normr     text_waitbar
-      normc     sample
-
- ** The following functions have been moved to the IO package:
-
-      cell2csv    csvconcat     xmlread
-      csv2cell    csvexplode    xmlwrite
-
- ** The function `clip' was imported from the audio package.
-
- ** The functions `apply' and `map' have been deprecated. `cellfun' and
-    `arrayfun' from octave core should be used instead.
-
- ** The function `partarray' has been deprecated. `mat2cell' from octave core
-    should be used instead.
-
- ** The function `temp_name' has been deprecated. `tmpnam' from octave core
-    should be used instead.
-
- ** Multiple bug fixes and increased input check on many functions.
-
- ** Package is no longer automatically loaded.
-
- ** improvements to help text.
-
- ** The function `csv2latex' has been made silent and had bugs fixed.
-
- ** The function `publish' had bugs fixed.
-
- ** The function `match' can now accept cell arrays as input.
+  matrices = mat2cell (dchrs, 3, 5, ones (1, 6));
+  matrices = cellfun (@(mat) [spcs, lbrk, mat, rbrk], matrices, "UniformOutput", false);
+  matrices = cat (3, matrices{:});
+endfunction
<< < 1 2 3 4 5 > >> (Page 3 of 5)