```--- a/wavelets/wfilt_remez.m
+++ b/wavelets/wfilt_remez.m
@@ -1,415 +1,415 @@
-function [h,g,a]=wfilt_remez(L,K,B)
-%WFILT_REMEZ Filters designed using Remez exchange algorithm
-%   Usage: [h,g,a]=wfilt_remez(L,K,B)
-%
-%   Input parameters:
-%         L     : Length of the filters.
-%         K     : Degree of flatness at \$z=-1\$.
-%         B     : Normalized transition bandwidth.
-%
-%   `[h,g,a]=wfilt_remez(L,K,B)` calculates a set of wavelet filters. You can
-%   control regularity, frequency selectivity, and length of the filters.
-%   It works performing a factorization based on the complex cepstrum of the polynomial.
-%
-%   References: rioul94remez
-%
-%   Examples:
-%   ---------
-%
-%   Frequency responses of the analysis filters:::
-%
-%      w = fwtinit({'remez',40,4,0.1});
-%      wtfftfreqz(w.h);
-%
-% Author: Jose Martin Garcia
-% e-mail: Uvi_Wave@tsc.uvigo.es
-
-if(nargin<3)
-     error('%s: Too few input parameters.',upper(mfilename));
-end
-
-
-poly=remezwav(L,K,B);
-rh=fc_cceps(poly);
-
-g{1} = rh;
-g{2} = -(-1).^(1:length(rh)).*g{1}(end:-1:1);
-
-h{1}=g{1}(length(g{1}):-1:1);
-h{2}=g{2}(length(g{2}):-1:1);
-
-a= [2;2];
-
-function [p,r]=remezwav(L,K,B)
-
-%REMEZWAV    P=REMEZWAV(L,K,B) gives impulse response of maximally
-%	     frequency selective P(z), product filter of paraunitary
-%	     filter bank solution H(z) of length L satisfying K flatness
-%	     constraints (wavelet filter), with normalized transition
-%	     bandwidth B (optional argument if K==L/2).
-%
-%	     [P,R]=REMEZWAV(L,K,B) also gives the roots of P(z) which can
-%	     be used to determine H(z).
-%
-%
-%	     References: O. Rioul and P. Duhamel, "A Remez Exchange Algorithm
-%			 for Orthonormal Wavelets", IEEE Trans. Circuits and
-%			 Systems - II: Analog and Digital Signal Processing,
-%			 41(8), August 1994
-%
-%       Author: Olivier Rioul, Nov. 1, 1992 (taken from the
-%		above reference)
-%  Modified by: Jose Martin Garcia
-%       e-mail: Uvi_Wave@tsc.uvigo.es
-%--------------------------------------------------------
-
-
-computeroots=(nargout>1);
-
-%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%
-if rem(L,2), error('L must be even'); end
-if rem(L/2-K,2), K=K+1; end
-N=L/2-K;
-%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 2  %%%%%%%%%%%%%%%%%%%%%%%%%%
-% Daubechies solution
-% PK(z)=z^(-2K-1))+AK(z^2)
-if K==0, AK=0;
-else
-   binom=pascal(2*K,1);
-   AK=binom(2*K,1:K)./(2*K-1:-2:1);
-   AK=[AK AK(K:-1:1)];
-   AK=AK/sum(AK);
-end
-%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 2' %%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Daubechies factor
-% PK(z)=((1+z^(-1))/2)^2*K QK(z)
-if computeroots & K>0
-   QK=binom(2*K,1:K);
-   QK=QK.*abs(QK);
-   QK=cumsum(QK);
-   QK=QK./abs(binom(2*K-1,1:K));
-   QK=[QK QK(K-1:-1:1)];
-   QK=QK/sum(QK)*2;
-end
-%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% output Daubechies solution PK(z)
-if K==L/2
-   p=zeros(1,2*L-1);
-   p(1:2:2*L-1)=AK; p(L)=1;
-   if computeroots
-      r=[roots(QK); -ones(L,1)];
-   end
-   return
-end
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Daubechies polinomial
-% PK(x)=1+x*DK(x^2)
-if K==0, DK=0;
-else
-   binom=pascal(K,1);
-   binom=binom(K,:);
-   DK=binom./(1:2:2*K-1);
-   DK=fliplr(DK)/sum(DK);
-end
-
-wp=(1/2-B)*pi;  % cut-off frequency
-gridens=16*(N+1);  % grid density
-found=0;  % boolean for Remez loop
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP I %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Initial estimate of yk
-a=min(4,K)/10;
-yk=linspace(0,1-a,N+1);
-yk=(yk.^2).*(3+a-(2+a)*yk);
-yk=1-(1-yk)*(1-cos(wp)^2);
-ykold=yk;
-
-iter=0;
-while 1  % REMEZ LOOP
-iter=iter+1;
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP II %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Compute delta
-Wyk=sqrt(yk).*((1-yk).^K);
-Dyk=(1-sqrt(yk).*polyval(DK,yk))./Wyk;
-for k=1:N+1
-   dy=yk-yk(k); dy(k)=[];
-   dy=dy(1:N/2).*dy(N:-1:N/2+1);
-   Lk(k)=prod(dy);
-end
-invW(1:2:N+1)=2./Wyk(1:2:N+1);
-delta=sum(Dyk./Lk)/sum(invW./Lk);
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP III %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% compute R(y) on fine grid
-Ryk=Dyk-delta.*invW; Ryk(N+1)=[];
-Lk=(yk(1:N)-yk(N+1))./Lk(1:N);
-y=linspace(cos(wp)^2,1-K*1e-7,gridens);
-yy=ones(N,1)*y-yk(1:N)'*ones(1,gridens);
-% yy contain y-yk on each line
-ind=find(yy==0);  % avoid division by 0
-if ~isempty(ind)
-   yy(ind)=1e-30*ones(size(ind));
-end
-yy=1./yy;
-Ry=((Ryk.*Lk)*yy)./(Lk*yy);
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP IV %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% find next yk
-Ey=1-delta-sqrt(y).*(polyval(DK,y)+((1-y).^K).*Ry);
-k=find(abs(diff(sign(diff(Ey))))==2)+1;
-% N extrema
-if length(k)>N
-% may happen if L and K are large
-   k=k(1:N);
-end
-yk=[yk(1) y(k)];
-% N+1 extrema including wp
-if K==0, yk=[yk 1]; end
-if all(yk==ykold), break; end
-ykold=yk;
-
-end  % REMEZ LOOP
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  STEP A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% compute impulse response
-w=(0:2*N-2)*pi/(2*N-1);
-y=cos(w).^2;
-yy=ones(N,1)*y-yk(1:N)'*ones(1,2*N-1);
-ind=find(yy==0);
-if ~isempty(ind)
-   yy(ind)=1e-30*ones(size(ind));
-end
-yy=1./yy;
-Ry=((Ryk.*Lk)*yy)./(Lk*yy);
-Ry(2:2:2*N-2)=-Ry(2:2:2*N-2);
-r=Ry*cos(w'*(2*(0:N-1)+1));
-% partial real IDFT done
-r=r/(2*N-1);
-r=[r r(N-1:-1:1)];
-p1=[r 0]+[0 r];
-pp=p1;  % save p1 for later use
-for k=1:2*K
-   p1=[p1 0]-[0 p1];
-end
-if rem(K,2), p1=-p1; end
-p1=p1/2^(2*K+1);
-p1(N+1:N+2*K)=p1(N+1:N+2*K)+AK;
-p(1:2:2*L-1)=p1; p(L)=1;
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP A' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% compute roots
-if computeroots
-   Q(1:2:2*length(pp)-1)=pp;
-   for k=1:2*K
-     Q=[Q 0]-[0 Q];
-   end
-   if rem(K,2), Q=-Q; end
-   Q=Q/2;
-   if K>0  % add Daubechies factor QK
-      Q(2*N+1:L-1)=Q(2*N+1:L-1)+QK;
-   else
-      Q(L)=1;
-   end
-   r=[roots(Q); -ones(2*K,1)];
-end
-
-
-
-function  h=fc_cceps(poly,ro)
-
-%FC_CCEPS    Performs a factorization using complex cepstrum.
-%
-%	     H = FC_CCEPS (POLY,RO) provides H that is the spectral
-%	     factor of a FIR transfer function POLY(z) with non-negative
-%	     frequency response. This methode let us obtain lowpass
-%	     filters of a bank structure without finding the POLY zeros.
-%	     The filter obtained is minimum phase (all zeros are inside
-%	     unit circle).
-%
-%	     RO is a parameter used to move zeros out of unit circle.
-%	     It is optional and the default value is RO=1.02.
-%
-%
-%	     References: P.P Vaidyanathan, "Multirate Systems and Filter
-%			 Banks", pp. 849-857, Prentice-Hall, 1993
-
-
-%--------------------------------------------------------
-%
-%
-% Uvi_Wave is free software; you can redistribute it and/or modify it
-% Free Software Foundation; either version 2, or (at your option) any
-% later version.
-%
-% Uvi_Wave is distributed in the hope that it will be useful, but WITHOUT
-% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-% FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
-% for more details.
-%
-% You should have received a copy of the GNU General Public License
-% along with Uvi_Wave; see the file COPYING.  If not, write to the Free
-% Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
-%
-%       Author: Jose Martin Garcia
-%       e-mail: Uvi_Wave@tsc.uvigo.es
-%--------------------------------------------------------
-
-if nargin < 2
-	ro=1.02;
-end
-
-L=4096;   % number points of fft.
-
-N=(length(poly)-1)/2;
-
-%% Moving zeros out of unit circle
-roo=(ro).^[0:2*N];
-g=poly./roo;
-
-%% Calculate complex cepstrum of secuence g
-ghat=mycceps(g,L);
-
-%% Fold the anticausal part of ghat, add it to the causal part and divide by 2
-gcausal=ghat(1 : L/2);
-gaux1=ghat(L/2+1 : L);
-gaux2=gaux1(L/2 :-1: 1);
-gantic=[0 gaux2(1 : L/2-1)];
-
-xhat=0.5*(gcausal+gantic);
-
-%% Calculate cepstral inversion
-h=invcceps(xhat,N+1);
-
-%% Low-pass filter has energie sqrt(2)
-h=h*sqrt(2)/sum(h);
-
-
-function  x=invcceps(xhat,L)
-
-%INVCCEPS    Complex cepstrum Inversion
-%
-%	     X= INVCCEPS (CX,L) recovers X from its complex cepstrum sequence
-%	     CX. X has to be real, causal, and stable (X(z) has no zeros
-%	     outside unit circle) and x(0)>0. L is the length of the
-%	     recovered secuence.
-%
-%
-%	     References: P.P Vaidyanathan, "Multirate Systems and Filter
-%			 Banks", pp. 849-857, Prentice-Hall, 1993
-
-
-%--------------------------------------------------------
-%
-%
-% Uvi_Wave is free software; you can redistribute it and/or modify it
-% Free Software Foundation; either version 2, or (at your option) any
-% later version.
-%
-% Uvi_Wave is distributed in the hope that it will be useful, but WITHOUT
-% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-% FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
-% for more details.
-%
-% You should have received a copy of the GNU General Public License
-% along with Uvi_Wave; see the file COPYING.  If not, write to the Free
-% Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
-%
-%       Author: Jose Martin Garcia
-%       e-mail: Uvi_Wave@tsc.uvigo.es
-%--------------------------------------------------------
-
-
-x=zeros(1,L);
-
-%% First point of x
-x(1)=exp(xhat(1));
-
-%% Recursion to obtain the other point of x
-for muestra=1:L-1
-   for k=1:muestra
-	x(muestra+1)=x(muestra+1)+k/muestra*xhat(k+1)*x(muestra-k+1);
-   end
-end
-
-
-function xhat=mycceps(x,L)
-
-%MYCCEPS     Complex Cepstrum
-%
-%	     CX = MYCCEPS (X,L) calculates complex cepstrum of the
-%	     real sequence X. L is the number of points of the fft
-%	     used. L is optional and its default value is 1024 points.
-%
-
-
-%--------------------------------------------------------
-%
-%
-% Uvi_Wave is free software; you can redistribute it and/or modify it
-% Free Software Foundation; either version 2, or (at your option) any
-% later version.
-%
-% Uvi_Wave is distributed in the hope that it will be useful, but WITHOUT
-% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-% FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
-% for more details.
-%
-% You should have received a copy of the GNU General Public License
-% along with Uvi_Wave; see the file COPYING.  If not, write to the Free
-% Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
-%
-%       Author: Jose Martin Garcia
-%       e-mail: Uvi_Wave@tsc.uvigo.es
-%--------------------------------------------------------
-
-if nargin < 2
-   L=1024;
-end
-
-H = fft(x,L);
-
-%% H must not be zero
-ind=find(abs(H)==0);
-if length(ind) > 0
-   H(ind)=H(ind)+1e-25;
-end
-
-logH = log(abs(H))+sqrt(-1)*rcunwrap(angle(H));
-
-xhat = real(ifft(logH));
-
-
-function y = rcunwrap(x)
-%RCUNWRAP Phase unwrap utility used by CCEPS.
-%	RCUNWRAP(X) unwraps the phase and removes phase corresponding
-
-%	Author(s): L. Shure, 1988
-%		   L. Shure and help from PL, 3-30-92, revised
-%	Copyright (c) 1984-94 by The MathWorks, Inc.
-%       \$Revision: 1.4 \$  \$Date: 1994/01/25 17:59:42 \$
-
-n = max(size(x));
-y = unwrap(x);
-nh = fix((n+1)/2);
-y(:) = y(:)' - pi*round(y(nh+1)/pi)*(0:(n-1))/nh;
-
-
-
-
-
+function [h,g,a]=wfilt_remez(L,K,B)
+%WFILT_REMEZ Filters designed using Remez exchange algorithm
+%   Usage: [h,g,a]=wfilt_remez(L,K,B)
+%
+%   Input parameters:
+%         L     : Length of the filters.
+%         K     : Degree of flatness at \$z=-1\$.
+%         B     : Normalized transition bandwidth.
+%
+%   `[h,g,a]=wfilt_remez(L,K,B)` calculates a set of wavelet filters. You can
+%   control regularity, frequency selectivity, and length of the filters.
+%   It works performing a factorization based on the complex cepstrum of the polynomial.
+%
+%   References: rioul94remez
+%
+%   Examples:
+%   ---------
+%
+%   Frequency responses of the analysis filters:::
+%
+%      w = fwtinit({'remez',40,4,0.1});
+%      wtfftfreqz(w.h);
+%
+% Author: Jose Martin Garcia
+% e-mail: Uvi_Wave@tsc.uvigo.es
+
+if(nargin<3)
+     error('%s: Too few input parameters.',upper(mfilename));
+end
+
+
+poly=remezwav(L,K,B);
+rh=fc_cceps(poly);
+
+g{1} = rh;
+g{2} = -(-1).^(1:length(rh)).*g{1}(end:-1:1);
+
+h{1}=g{1}(length(g{1}):-1:1);
+h{2}=g{2}(length(g{2}):-1:1);
+
+a= [2;2];
+
+function [p,r]=remezwav(L,K,B)
+
+%REMEZWAV    P=REMEZWAV(L,K,B) gives impulse response of maximally
+%	     frequency selective P(z), product filter of paraunitary
+%	     filter bank solution H(z) of length L satisfying K flatness
+%	     constraints (wavelet filter), with normalized transition
+%	     bandwidth B (optional argument if K==L/2).
+%
+%	     [P,R]=REMEZWAV(L,K,B) also gives the roots of P(z) which can
+%	     be used to determine H(z).
+%
+%
+%	     References: O. Rioul and P. Duhamel, "A Remez Exchange Algorithm
+%			 for Orthonormal Wavelets", IEEE Trans. Circuits and
+%			 Systems - II: Analog and Digital Signal Processing,
+%			 41(8), August 1994
+%
+%       Author: Olivier Rioul, Nov. 1, 1992 (taken from the
+%		above reference)
+%  Modified by: Jose Martin Garcia
+%       e-mail: Uvi_Wave@tsc.uvigo.es
+%--------------------------------------------------------
+
+
+computeroots=(nargout>1);
+
+%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%
+if rem(L,2), error('L must be even'); end
+if rem(L/2-K,2), K=K+1; end
+N=L/2-K;
+%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 2  %%%%%%%%%%%%%%%%%%%%%%%%%%
+% Daubechies solution
+% PK(z)=z^(-2K-1))+AK(z^2)
+if K==0, AK=0;
+else
+   binom=pascal(2*K,1);
+   AK=binom(2*K,1:K)./(2*K-1:-2:1);
+   AK=[AK AK(K:-1:1)];
+   AK=AK/sum(AK);
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 2' %%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Daubechies factor
+% PK(z)=((1+z^(-1))/2)^2*K QK(z)
+if computeroots & K>0
+   QK=binom(2*K,1:K);
+   QK=QK.*abs(QK);
+   QK=cumsum(QK);
+   QK=QK./abs(binom(2*K-1,1:K));
+   QK=[QK QK(K-1:-1:1)];
+   QK=QK/sum(QK)*2;
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% output Daubechies solution PK(z)
+if K==L/2
+   p=zeros(1,2*L-1);
+   p(1:2:2*L-1)=AK; p(L)=1;
+   if computeroots
+      r=[roots(QK); -ones(L,1)];
+   end
+   return
+end
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Daubechies polinomial
+% PK(x)=1+x*DK(x^2)
+if K==0, DK=0;
+else
+   binom=pascal(K,1);
+   binom=binom(K,:);
+   DK=binom./(1:2:2*K-1);
+   DK=fliplr(DK)/sum(DK);
+end
+
+wp=(1/2-B)*pi;  % cut-off frequency
+gridens=16*(N+1);  % grid density
+found=0;  % boolean for Remez loop
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP I %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Initial estimate of yk
+a=min(4,K)/10;
+yk=linspace(0,1-a,N+1);
+yk=(yk.^2).*(3+a-(2+a)*yk);
+yk=1-(1-yk)*(1-cos(wp)^2);
+ykold=yk;
+
+iter=0;
+while 1  % REMEZ LOOP
+iter=iter+1;
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP II %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Compute delta
+Wyk=sqrt(yk).*((1-yk).^K);
+Dyk=(1-sqrt(yk).*polyval(DK,yk))./Wyk;
+for k=1:N+1
+   dy=yk-yk(k); dy(k)=[];
+   dy=dy(1:N/2).*dy(N:-1:N/2+1);
+   Lk(k)=prod(dy);
+end
+invW(1:2:N+1)=2./Wyk(1:2:N+1);
+delta=sum(Dyk./Lk)/sum(invW./Lk);
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP III %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% compute R(y) on fine grid
+Ryk=Dyk-delta.*invW; Ryk(N+1)=[];
+Lk=(yk(1:N)-yk(N+1))./Lk(1:N);
+y=linspace(cos(wp)^2,1-K*1e-7,gridens);
+yy=ones(N,1)*y-yk(1:N)'*ones(1,gridens);
+% yy contain y-yk on each line
+ind=find(yy==0);  % avoid division by 0
+if ~isempty(ind)
+   yy(ind)=1e-30*ones(size(ind));
+end
+yy=1./yy;
+Ry=((Ryk.*Lk)*yy)./(Lk*yy);
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP IV %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% find next yk
+Ey=1-delta-sqrt(y).*(polyval(DK,y)+((1-y).^K).*Ry);
+k=find(abs(diff(sign(diff(Ey))))==2)+1;
+% N extrema
+if length(k)>N
+% may happen if L and K are large
+   k=k(1:N);
+end
+yk=[yk(1) y(k)];
+% N+1 extrema including wp
+if K==0, yk=[yk 1]; end
+if all(yk==ykold), break; end
+ykold=yk;
+
+end  % REMEZ LOOP
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  STEP A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% compute impulse response
+w=(0:2*N-2)*pi/(2*N-1);
+y=cos(w).^2;
+yy=ones(N,1)*y-yk(1:N)'*ones(1,2*N-1);
+ind=find(yy==0);
+if ~isempty(ind)
+   yy(ind)=1e-30*ones(size(ind));
+end
+yy=1./yy;
+Ry=((Ryk.*Lk)*yy)./(Lk*yy);
+Ry(2:2:2*N-2)=-Ry(2:2:2*N-2);
+r=Ry*cos(w'*(2*(0:N-1)+1));
+% partial real IDFT done
+r=r/(2*N-1);
+r=[r r(N-1:-1:1)];
+p1=[r 0]+[0 r];
+pp=p1;  % save p1 for later use
+for k=1:2*K
+   p1=[p1 0]-[0 p1];
+end
+if rem(K,2), p1=-p1; end
+p1=p1/2^(2*K+1);
+p1(N+1:N+2*K)=p1(N+1:N+2*K)+AK;
+p(1:2:2*L-1)=p1; p(L)=1;
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP A' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% compute roots
+if computeroots
+   Q(1:2:2*length(pp)-1)=pp;
+   for k=1:2*K
+     Q=[Q 0]-[0 Q];
+   end
+   if rem(K,2), Q=-Q; end
+   Q=Q/2;
+   if K>0  % add Daubechies factor QK
+      Q(2*N+1:L-1)=Q(2*N+1:L-1)+QK;
+   else
+      Q(L)=1;
+   end
+   r=[roots(Q); -ones(2*K,1)];
+end
+
+
+
+function  h=fc_cceps(poly,ro)
+
+%FC_CCEPS    Performs a factorization using complex cepstrum.
+%
+%	     H = FC_CCEPS (POLY,RO) provides H that is the spectral
+%	     factor of a FIR transfer function POLY(z) with non-negative
+%	     frequency response. This methode let us obtain lowpass
+%	     filters of a bank structure without finding the POLY zeros.
+%	     The filter obtained is minimum phase (all zeros are inside
+%	     unit circle).
+%
+%	     RO is a parameter used to move zeros out of unit circle.
+%	     It is optional and the default value is RO=1.02.
+%
+%
+%	     References: P.P Vaidyanathan, "Multirate Systems and Filter
+%			 Banks", pp. 849-857, Prentice-Hall, 1993
+
+
+%--------------------------------------------------------
+%
+%
+% Uvi_Wave is free software; you can redistribute it and/or modify it
+% Free Software Foundation; either version 2, or (at your option) any
+% later version.
+%
+% Uvi_Wave is distributed in the hope that it will be useful, but WITHOUT
+% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+% FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+% for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with Uvi_Wave; see the file COPYING.  If not, write to the Free
+% Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+%
+%       Author: Jose Martin Garcia
+%       e-mail: Uvi_Wave@tsc.uvigo.es
+%--------------------------------------------------------
+
+if nargin < 2
+	ro=1.02;
+end
+
+L=4096;   % number points of fft.
+
+N=(length(poly)-1)/2;
+
+%% Moving zeros out of unit circle
+roo=(ro).^[0:2*N];
+g=poly./roo;
+
+%% Calculate complex cepstrum of secuence g
+ghat=mycceps(g,L);
+
+%% Fold the anticausal part of ghat, add it to the causal part and divide by 2
+gcausal=ghat(1 : L/2);
+gaux1=ghat(L/2+1 : L);
+gaux2=gaux1(L/2 :-1: 1);
+gantic=[0 gaux2(1 : L/2-1)];
+
+xhat=0.5*(gcausal+gantic);
+
+%% Calculate cepstral inversion
+h=invcceps(xhat,N+1);
+
+%% Low-pass filter has energie sqrt(2)
+h=h*sqrt(2)/sum(h);
+
+
+function  x=invcceps(xhat,L)
+
+%INVCCEPS    Complex cepstrum Inversion
+%
+%	     X= INVCCEPS (CX,L) recovers X from its complex cepstrum sequence
+%	     CX. X has to be real, causal, and stable (X(z) has no zeros
+%	     outside unit circle) and x(0)>0. L is the length of the
+%	     recovered secuence.
+%
+%
+%	     References: P.P Vaidyanathan, "Multirate Systems and Filter
+%			 Banks", pp. 849-857, Prentice-Hall, 1993
+
+
+%--------------------------------------------------------
+%
+%
+% Uvi_Wave is free software; you can redistribute it and/or modify it
+% Free Software Foundation; either version 2, or (at your option) any
+% later version.
+%
+% Uvi_Wave is distributed in the hope that it will be useful, but WITHOUT
+% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+% FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+% for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with Uvi_Wave; see the file COPYING.  If not, write to the Free
+% Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+%
+%       Author: Jose Martin Garcia
+%       e-mail: Uvi_Wave@tsc.uvigo.es
+%--------------------------------------------------------
+
+
+x=zeros(1,L);
+
+%% First point of x
+x(1)=exp(xhat(1));
+
+%% Recursion to obtain the other point of x
+for muestra=1:L-1
+   for k=1:muestra
+	x(muestra+1)=x(muestra+1)+k/muestra*xhat(k+1)*x(muestra-k+1);
+   end
+end
+
+
+function xhat=mycceps(x,L)
+
+%MYCCEPS     Complex Cepstrum
+%
+%	     CX = MYCCEPS (X,L) calculates complex cepstrum of the
+%	     real sequence X. L is the number of points of the fft
+%	     used. L is optional and its default value is 1024 points.
+%
+
+
+%--------------------------------------------------------
+%
+%
+% Uvi_Wave is free software; you can redistribute it and/or modify it
+% Free Software Foundation; either version 2, or (at your option) any
+% later version.
+%
+% Uvi_Wave is distributed in the hope that it will be useful, but WITHOUT
+% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+% FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+% for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with Uvi_Wave; see the file COPYING.  If not, write to the Free
+% Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+%
+%       Author: Jose Martin Garcia
+%       e-mail: Uvi_Wave@tsc.uvigo.es
+%--------------------------------------------------------
+
+if nargin < 2
+   L=1024;
+end
+
+H = fft(x,L);
+
+%% H must not be zero
+ind=find(abs(H)==0);
+if length(ind) > 0
+   H(ind)=H(ind)+1e-25;
+end
+
+logH = log(abs(H))+sqrt(-1)*rcunwrap(angle(H));
+
+xhat = real(ifft(logH));
+
+
+function y = rcunwrap(x)
+%RCUNWRAP Phase unwrap utility used by CCEPS.
+%	RCUNWRAP(X) unwraps the phase and removes phase corresponding
+
+%	Author(s): L. Shure, 1988
+%		   L. Shure and help from PL, 3-30-92, revised
+%	Copyright (c) 1984-94 by The MathWorks, Inc.
+%       \$Revision: 1.4 \$  \$Date: 1994/01/25 17:59:42 \$
+
+n = max(size(x));
+y = unwrap(x);
+nh = fix((n+1)/2);
+y(:) = y(:)' - pi*round(y(nh+1)/pi)*(0:(n-1))/nh;
+
+
+
+
+
```