--- a/fourier/nextfastfft.m
+++ b/fourier/nextfastfft.m
@@ -1,22 +1,22 @@
 function [nfft,tableout]=nextfastfft(n)
-%NEXTNICEFFT  Next higher number with a fast FFT
+%NEXTFASTFFT  Next higher number with a fast FFT
 %   Usage: nfft=nextfastfft(n);
 %
-%   NEXTFASTFFT(n) will return the next number greater than or equal to
-%   n, for which the computation of an FFT is fast. Such a number is
-%   solely comprised of small prime-factors.
+%   `nextfastfft(n)` returns the next number greater than or equal to *n*,
+%   for which the computation of an FFT is fast. Such a number is solely
+%   comprised of small prime-factors.
 %
-%   NEXTFASTFFT is intended as a replacement of NEXTPOW2, which if often
-%   used for the same purpose. However, a modern FFT implementation (like FFTW)
-%   usually performs well for sizes which are powers or 2,3,5 and 7, and
-%   not only just for powers of 2.
+%   `nextfastfft` is intended as a replacement of `nextpow2`, which is often
+%   used for the same purpose. However, a modern FFT implementation (like
+%   FFTW) usually performs well for sizes which are powers or $2,3,5$ and $7$,
+%   and not only just for powers of *2*.
 %
-%   The algorithm will look up the best size in a table, which is
-%   computed the first time the function is run. If the input size is
-%   larger than the largest value in the table, the input size will be
-%   reduced by factors of 2, until it is in range.
+%   The algorithm will look up the best size in a table, which is computed
+%   the first time the function is run. If the input size is larger than the
+%   largest value in the table, the input size will be reduced by factors of
+%   *2*, until it is in range.
 %
-%   [n,nfft]=NEXTFASTFFT(n) additionally returns the table used for lookup.
+%   `[n,nfft]=nextfastfft(n)` additionally returns the table used for lookup.
 %
 %   Demos: demo_nextfastfft
 %
@@ -25,71 +25,71 @@
 %   AUTHOR: Peter L. Soendergaard and Johan Sebastian Rosenkilde Nielsen
   
   
-  persistent table;
+persistent table;
   
-  maxval=2^20;
+maxval=2^20;
 
-  if isempty(table)
-    % Compute the table for the first time, it is empty.
-    l2=log(2);
-    l3=log(3);
-    l5=log(5);
-    l7=log(7);
-    lmaxval=log(maxval);
-    table=zeros(1286,1);
-    ii=1;
-    prod2=1;
-    for i2=0:floor(lmaxval/l2)
-      prod3=prod2;
-      for i3=0:floor((lmaxval-i2*l2)/l3)               
-        prod5=prod3;
-        for i5=0:floor((lmaxval-i2*l2-i3*l3)/l5)
-          prod7=prod5;
-          for i7=0:floor((lmaxval-i2*l2-i3*l3-i5*l5)/l7)
-            table(ii)=prod7; 
-            prod7=prod7*7;
-            ii=ii+1;
-          end;
-          prod5=prod5*5;                    
+if isempty(table)
+  % Compute the table for the first time, it is empty.
+  l2=log(2);
+  l3=log(3);
+  l5=log(5);
+  l7=log(7);
+  lmaxval=log(maxval);
+  table=zeros(1286,1);
+  ii=1;
+  prod2=1;
+  for i2=0:floor(lmaxval/l2)
+    prod3=prod2;
+    for i3=0:floor((lmaxval-i2*l2)/l3)               
+      prod5=prod3;
+      for i5=0:floor((lmaxval-i2*l2-i3*l3)/l5)
+        prod7=prod5;
+        for i7=0:floor((lmaxval-i2*l2-i3*l3-i5*l5)/l7)
+          table(ii)=prod7; 
+          prod7=prod7*7;
+          ii=ii+1;
         end;
-        prod3=prod3*3;
+        prod5=prod5*5;                    
       end;
-      prod2=prod2*2;            
+      prod3=prod3*3;
     end;
-    table=sort(table);
+    prod2=prod2*2;            
   end;
+  table=sort(table);
+end;
 
-  % Copy input to output. This allows us to efficiently work in-place.
-  nfft=n;
-    
-  % Handle input of any shape by Fortran indexing.
-  for ii=1:numel(n)
-    n2reduce=0;
-    
-    if n(ii)>maxval
-      % Reduce by factors of 2 to get below maxval
-      n2reduce=ceil(log2(nfft(ii)/maxval));
-      nfft(ii)=nfft(ii)/2^n2reduce;
-    end;
-    
-    % Use a simple bisection method to find the answer in the table.
-    from=1;
-    to=numel(table);
-    while from<=to
-      mid = round((from + to)/2);    
-      diff = table(mid)-nfft(ii);
-      if diff<0
-        from=mid+1;
-      else
-        to=mid-1;                       
-      end
-    end
-    nfft(ii)=table(from);
+% Copy input to output. This allows us to efficiently work in-place.
+nfft=n;
 
-    % Add back the missing factors of 2 (if any)
-    nfft(ii)=nfft(ii)*2^n2reduce;
-
+% Handle input of any shape by Fortran indexing.
+for ii=1:numel(n)
+  n2reduce=0;
+  
+  if n(ii)>maxval
+    % Reduce by factors of 2 to get below maxval
+    n2reduce=ceil(log2(nfft(ii)/maxval));
+    nfft(ii)=nfft(ii)/2^n2reduce;
   end;
   
-  tableout=table;
-%OLDFORMAT
+  % Use a simple bisection method to find the answer in the table.
+  from=1;
+  to=numel(table);
+  while from<=to
+    mid = round((from + to)/2);    
+    diff = table(mid)-nfft(ii);
+    if diff<0
+      from=mid+1;
+    else
+      to=mid-1;                       
+    end
+  end
+  nfft(ii)=table(from);
+  
+  % Add back the missing factors of 2 (if any)
+  nfft(ii)=nfft(ii)*2^n2reduce;
+  
+end;
+
+tableout=table;
+