## [46726a]: inst / hartley_entropy.m Maximize Restore History

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 ## Copyright (C) 2007 Muthiah Annamalai ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see . ## ## -*- texinfo -*- ## @deftypefn {Function File} {} hartley_entropy (@var{P}) ## ## Compute the Hartley entropy using Reyni entropy of order 0, ## for the given probability distribution. ## ## @math{H\alpha(P(x)) = log{\sum_i (Pi(x)^\alpha)}/(1-\alpha)} ## ## special-cases include, and when alpha=0, it reduces ## to Hartley entropy. ## ## Hartley entropy H0(X) = log|X|, where X=n(P), cardinality of P, ## the pdf of random variable x. ## ## @example ## @group ## hartley_entropy([0.2 0.3 0.5]) ## @result{} ans = 1.0986 ## @end group ## @end example ## @end deftypefn function R=hartley_entropy(P) if (nargin ~= 1) print_usage(); end R=renyi_entropy(0,P); end %!assert( hartley_entropy([0.2 0.3 0.5]), 1.0986, 1e-3 )