Learn how easy it is to sync an existing GitHub or Google Code repo to a SourceForge project! See Demo

Close

[46726a]: inst / conditionalentropy_XY.m Maximize Restore History

Download this file

conditionalentropy_XY.m    58 lines (55 with data), 1.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
## Copyright (C) 2006 Muthiah Annamalai <muthiah.annamalai@uta.edu>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.
##
## -*- texinfo -*-
## @deftypefn {Function File} {} conditionalentropy_XY (@var{x}, @var{y})
##
## Computes the
## @iftex
## @tex
## $H(\frac{X}{Y}) = \sum_i{P(Y_i) H(\frac{X}{Y_i})$, where
## $H(\frac{X}{Y_i}) = \sum_k{-P(\frac{X_k}{Y_i}) \log(P(\frac{X_k}{Y_i}))$,
## where $P(\frac{X_k}{Y_i} = \frac{P(X_k,Y_i)}{P(Y_i)}$.
## @end tex
## @end iftex
## @ifinfo
## H(X/Y) = SUM( P(Yi)*H(X/Yi) ) , where
## H(X/Yi) = SUM( -P(Xk/Yi)log(P(Xk/Yi))), where
## P(Xk/Yi) = P(Xk,Yi)/P(Yi).
## @end ifinfo
## The matrix @var{xy} must have @var{y} along rows and @var{x} along columns.
## @iftex
## @tex
## $X_i = \sum{COL_i}
## $Y_i = \sum{ROW_i}
## $H(X|Y) = H(X,Y) - H(Y)$
## @end tex
## @end iftex
## @ifinfo
## Xi = SUM( COLi )
## Yi = SUM( ROWi )
## H(X|Y) = H(X,Y) - H(Y)
## @end ifinfo
## @end deftypefn
## @seealso{entropy, conditionalentropy}
function val=conditionalentropy_XY(XY)
val=0.0;
for i=1:size(XY)(2)
Yi = sum(XY(i,:));
val = val + Yi*entropy(XY(i,:)/sum(XY(i,:)));
end
return
end
%!assert(conditionalentropy_XY([0.7 0.3; 0.3 0.7]),1.7626,1e-4)