[07d29c]: fftconv2.m Maximize Restore History

Download this file

fftconv2.m    135 lines (114 with data), 4.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
## Copyright (C) 2004 Stefan van der Walt <stefan@sun.ac.za>
##
## This program is free software; redistribution and use in source and
## binary forms, with or without modification, are permitted provided that
## the following conditions are met:
##
## 1. Redistributions of source code must retain the above copyright
## notice, this list of conditions and the following disclaimer.
## 2. Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
## ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
## FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
## OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
## HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
## LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
## OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
## SUCH DAMAGE.
## FFTCONV2 Convolve 2 dimensional signals using the FFT.
##
## usage: fftconv2(a, b[, shape])
## fftconv2(v1, v2, a, shape)
##
## This method is faster but less accurate for large a,b. It
## also uses more memory. A small complex component will be
## introduced even if both a and b are real.
##
## see also: conv2
## Author: Stefan van der Walt <stefan@sun.ac.za>
## Date: 2004
function X = fftconv2(varargin)
if (nargin < 2)
usage("fftconv2(a,b[,shape]) or fftconv2(v1, v2, a, shape)")
endif
shape = "full";
rowcolumn = 0;
if ((nargin > 2) && ismatrix(varargin{3}))
## usage: fftconv2(v1, v2, a[, shape])
rowcolumn = 1;
v1 = varargin{1}(:)';
v2 = varargin{2}(:);
orig_a = varargin{3};
if (nargin == 4) shape = varargin{4}; endif
else
## usage: fftconv2(a, b[, shape])
a = varargin{1};
b = varargin{2};
if (nargin == 3) shape = varargin{3}; endif
endif
if (rowcolumn)
a = fftconv2(orig_a, v2);
b = v1;
endif
ra = rows(a);
ca = columns(a);
rb = rows(b);
cb = columns(b);
A = fft2(impad(a, [0 cb-1], [0 rb-1]));
B = fft2(impad(b, [0 ca-1], [0 ra-1]));
X = ifft2(A.*B);
if (rowcolumn)
rb = rows(v2);
ra = rows(orig_a);
cb = columns(v1);
ca = columns(orig_a);
endif
if strcmp(shape,"same")
r_top = ceil((rb + 1) / 2);
c_top = ceil((cb + 1) / 2);
X = X(r_top:r_top + ra - 1, c_top:c_top + ca - 1);
elseif strcmp(shape, "valid")
X = X(rb:ra, cb:ca);
endif
endfunction
%!# usage: fftconv2(a,b,[, shape])
%!shared a,b
%! a = repmat(1:10, 5);
%! b = repmat(10:-1:3, 7);
%!assert(norm(fftconv2(a,b)-conv2(a,b)), 0, 1e6*eps)
%!assert(norm(fftconv2(b,a)-conv2(b,a)), 0, 1e6*eps)
%!assert(norm(fftconv2(a,b,'full')-conv2(a,b,'full')), 0, 1e6*eps)
%!assert(norm(fftconv2(b,a,'full')-conv2(b,a,'full')), 0, 1e6*eps)
%!assert(norm(fftconv2(a,b,'same')-conv2(a,b,'same')), 0, 1e6*eps)
%!assert(norm(fftconv2(b,a,'same')-conv2(b,a,'same')), 0, 1e6*eps)
%!assert(isempty(fftconv2(a,b,'valid')));
%!assert(norm(fftconv2(b,a,'valid')-conv2(b,a,'valid')), 0, 1e6*eps)
%!# usage: fftconv2(v1, v2, a[, shape])
%!shared x,y,a
%! x = 1:4; y = 4:-1:1; a = repmat(1:10, 5);
%!assert(norm(fftconv2(x,y,a)-conv2(x,y,a)), 0, 1e6*eps)
%!assert(norm(fftconv2(x,y,a,'full')-conv2(x,y,a,'full')), 0, 1e6*eps)
%!assert(norm(fftconv2(x,y,a,'same')-conv2(x,y,a,'same')), 0, 1e6*eps)
%!assert(norm(fftconv2(x,y,a,'valid')-conv2(x,y,a,'valid')), 0, 1e6*eps)
%!demo
%! ## Draw a cross
%! N = 100;
%! [x,y] = meshgrid(-N:N, -N:N);
%! z = 0*x;
%! z(N,1:2*N+1) = 1; z(1:2*N+1, N) = 1;
%! imshow(z);
%!
%! ## Draw a sinc blob
%! n = floor(N/10);
%! [x,y] = meshgrid(-n:n, -n:n);
%! b = x.^2 + y.^2; b = max(b(:)) - b; b = b / max(b(:));
%! imshow(b);
%!
%! ## Convolve the cross with the blob
%! imshow(real(fftconv2(z, b, 'same')*N))