[07d29c]: applylut.m Maximize Restore History

Download this file

applylut.m    63 lines (51 with data), 2.2 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
## Copyright (C) 2004 Josep Mones i Teixidor
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
## -*- texinfo -*-
## @deftypefn {Function File} {@var{A} = } applylut (@var{BW},@var{LUT})
## Uses lookup tables to perform a neighbour operation on binary images.
##
## A = applylut(BW,LUT) returns the result of a neighbour operation
## using the lookup table @var{LUT} which can be created by makelut.
##
## It first computes a matrix with the index of each element in the
## lookup table. To do this, it convolves the original matrix with a
## matrix which assigns each of the neighbours a bit in the resulting
## index. Then @var{LUT} is accessed to compute the result.
##
## @end deftypefn
## @seealso{makelut}
## Author: Josep Mones i Teixidor <jmones@puntbarra.com>
function A = applylut(BW, LUT)
if (nargin != 2)
usage ("A = applylut(BW, LUT)");
endif
nq=log2(length(LUT));
n=sqrt(nq);
if (floor(n)!=n)
error ("applylut: LUT length is not as expected. Use makelut to create it.");
endif
w=reshape(2.^[nq-1:-1:0],n,n);
A=LUT(filter2(w,BW)+1);
endfunction
%!demo
%! lut=makelut(inline('sum(x(:))>=3','x'), 3);
%! applylut(eye(5),lut)
%! % everything should be 0 despite a diagonal which
%! % doesn't reach borders.
%!assert(prod(applylut(eye(3),makelut(inline('x(1,1)==1','x'),2))==eye(3))==1); % 2-by-2 test
%!assert(prod(applylut(eye(3),makelut(inline('x(2,2)==1','x'),3))==eye(3))==1); % 3-by-3 test
%!assert(prod(applylut(eye(3),makelut(inline('x(3,3)==1','x'),3))== \
%! applylut(eye(3),makelut(inline('x(2,2)==1','x'),2)))==1);