[48d621]: inst / __ga_problem_update_state_at_each_generation__.m Maximize Restore History

Download this file

__ga_problem_update_state_at_each_generation__.m    48 lines (44 with data), 2.2 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
## Copyright (C) 2008, 2010 Luca Favatella <slackydeb@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.
## Author: Luca Favatella <slackydeb@gmail.com>
## Version: 1.3.1
function state = ...
__ga_problem_update_state_at_each_generation__ (state, problem,
private_state)
if ((state.Generation > 0) || isempty (problem.options.InitialScores))
state.Score(1:problem.options.PopulationSize, 1) = ...
__ga_scores__ (problem, state.Population);
else ## (Generation == 0) && (! isempty (InitialScores))
nrIS = rows (problem.options.InitialScores);
#assert (rows (problem.options.InitialPopulation) <= problem.options.PopulationSize); ## DEBUG
if (nrIS <= rows (problem.options.InitialPopulation))
missing_rows = (nrIS+1):problem.options.PopulationSize;
state.Score(1:problem.options.PopulationSize, 1) = ...
[problem.options.InitialScores(:, 1);
(__ga_scores__ (problem, state.Population(missing_rows, :)))
];
else
error ("rows (InitialScores) > rows (InitialPopulation)");
endif
endif
state.Expectation(1, 1:problem.options.PopulationSize) = ...
problem.options.FitnessScalingFcn (state.Score, private_state.nParents);
state.Best(state.Generation + 1, 1) = min (state.Score);
endfunction
%!error
%! state.Generation = 0;
%! problem = struct ("fitnessfcn", @rastriginsfcn, "nvars", 2, "options", gaoptimset ("Generations", 10, "InitialScores", [0; 0; 0]));
%! unused = 0;
%! __ga_problem_update_state_at_each_generation__ (state, problem, unused);