[5fe2a1]: src / assemble_system.cc Maximize Restore History

Download this file

assemble_system.cc    272 lines (233 with data), 10.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*
Copyright (C) 2013 Marco Vassallo <gedeone-octave@users.sourceforge.net>
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "form.h"
#include "boundarycondition.h"
DEFUN_DLD (assemble_system, args, nargout, "-*- texinfo -*-\n\
@deftypefn {Function File} {[@var{A}], [@var{b}], [@var{x}(Optional)]} = \
assemble_system (@var{form a}, @var{form L}, @var{DirichletBC}(Optional), @var{...}) \n\
The input arguments are\n\
@itemize @bullet\n\
@item @var{form a} the bilinear form to assemble.\n\
@item @var{form a} the linear form to assemble.\n\
@item @var{DirichletBC} represents the optional BC that you wish to apply to\n\
the system. If more than one BC has to be applied, just list them.\n\
@end itemize \n\
The output @var{A} is a discretized representation of the system:\n\
@itemize @bullet\n\
@item @var{A} is the sparse Matrix corresponding to the @var{form a}\n\
@item @var{A} is the Vector corresponding to the @var{form L}\n\
@end itemize \n\
If you need to apply boundary condition to a system for a nonlinear problem \n\
then you should provide as 3rd argument the vector and you will receive it back\n\
as the third output argument. For an example of this situation, you can look\n\
the example HyperElasticity.m\n\
@seealso{BilinearForm, LinearForm, ResidualForm, JacobianForm}\n\
@end deftypefn")
{
int nargin = args.length ();
octave_value_list retval;
if (! form_type_loaded)
{
form::register_type ();
form_type_loaded = true;
mlock ();
}
if (! boundarycondition_type_loaded)
{
boundarycondition::register_type ();
boundarycondition_type_loaded = true;
mlock ();
}
if (nargout == 2)
{
if (nargin < 2)
print_usage ();
else
{
if (args(0).type_id () == form::static_type_id ()
&& args(1).type_id () == form::static_type_id ())
{
const form & frm1 = static_cast<const form&> (args(0).get_rep ());
const form & frm2 = static_cast<const form&> (args(1).get_rep ());
if (! error_state)
{
const dolfin::Form & a = frm1.get_form ();
const dolfin::Form & b = frm2.get_form ();
a.check ();
b.check ();
if (a.rank () == 2 && b.rank () == 1)
{
dolfin::Matrix A;
dolfin::assemble (A, a);
dolfin::Vector B;
dolfin::assemble (B, b);
for (std::size_t i = 2; i < nargin; ++i)
{
if (args(i).type_id () == boundarycondition::static_type_id ())
{
const boundarycondition & bc
= static_cast<const boundarycondition&> (args(i).get_rep ());
const std::vector<boost::shared_ptr <const dolfin::DirichletBC> > & pbc
= bc.get_bc ();
for (std::size_t j = 0; j < pbc.size (); ++j)
pbc[j]->apply(A, B);
}
else
error ("assemble_system: unknown argument type");
}
std::cout << "Assembling Matrix from the bilinear form..."
<< std::endl;
std::size_t nr = A.size (0), nc = A.size (1);
std::vector<double> data_tmp;
std::vector<std::size_t> cidx_tmp;
octave_idx_type dims = A.size (0), nz = 0, ii = 0;
ColumnVector ridx (dims), cidx (dims), data (dims);
for (std::size_t i = 0; i < nr; ++i)
{
A.getrow (i, cidx_tmp, data_tmp);
nz += cidx_tmp.size ();
if (dims < nz)
{
dims = 1.2 * ((nr * nz) / (i + 1));;
ridx.resize (dims);
cidx.resize (dims);
data.resize (dims);
}
for (octave_idx_type j = 0; j < cidx_tmp.size (); ++j)
{
ridx.xelem (ii + j) = i + 1;
cidx.xelem (ii + j) = cidx_tmp [j] + 1;
data.xelem (ii + j) = data_tmp [j];
}
ii = nz;
}
ridx.resize (ii);
cidx.resize (ii);
data.resize (ii);
SparseMatrix sm (data, ridx, cidx, nr, nc);
retval(0) = sm;
std::cout << "Assembling Vector from the linear form..."
<< std::endl;
dim_vector dim;
dim.resize (2);
dim(0) = B.size ();
dim(1) = 1;
Array<double> myb (dim);
for (std::size_t i = 0; i < B.size (); ++i)
myb.xelem (i) = B[i];
retval(1) = myb;
}
}
else
error ("assemble_system: unknown size");
}
}
}
else if (nargout == 3)
{
std::cout << "Assemble_system: apply boundary condition to a vector for a nonlinear problem..."
<< std::endl;
if (nargin < 3)
print_usage ();
else
{
if (args(0).type_id () == form::static_type_id ()
&& args(1).type_id () == form::static_type_id ())
{
const form & frm1 = static_cast<const form&> (args(0).get_rep ());
const form & frm2 = static_cast<const form&> (args(1).get_rep ());
const Array<double> myx = args(2).array_value ();
if (! error_state)
{
const dolfin::Form & a = frm1.get_form ();
const dolfin::Form & b = frm2.get_form ();
a.check ();
b.check ();
if (a.rank () == 2 && b.rank () == 1)
{
dolfin::Matrix A;
dolfin::assemble (A, a);
dolfin::Vector B;
dolfin::assemble (B, b);
dolfin::Vector x (myx.length ());
for (std::size_t i = 0; i < myx.length (); ++i)
x.setitem (i, myx.xelem (i));
for (std::size_t i = 3; i < nargin; ++i)
{
if (args(i).type_id () == boundarycondition::static_type_id ())
{
const boundarycondition & bc
= static_cast<const boundarycondition&> (args(i).get_rep ());
const std::vector<boost::shared_ptr <const dolfin::DirichletBC> > & pbc
= bc.get_bc ();
for (std::size_t j = 0; j < pbc.size (); ++j)
pbc[j]->apply(A, B, x);
}
else
error ("assemble_system: unknown argument type");
}
std::cout << "Assembling Matrix from the bilinear form..."
<< std::endl;
std::size_t nr = A.size (0), nc = A.size (1);
std::vector<double> data_tmp;
std::vector<std::size_t> cidx_tmp;
octave_idx_type dims = A.size (0), nz = 0, ii = 0;
ColumnVector ridx (dims), cidx (dims), data (dims);
for (std::size_t i = 0; i < nr; ++i)
{
A.getrow (i, cidx_tmp, data_tmp);
nz += cidx_tmp.size ();
if (dims < nz)
{
dims = 1.2 * ((nr * nz) / (i + 1));;
ridx.resize (dims);
cidx.resize (dims);
data.resize (dims);
}
for (octave_idx_type j = 0; j < cidx_tmp.size (); ++j)
{
ridx.xelem (ii + j) = i + 1;
cidx.xelem (ii + j) = cidx_tmp [j] + 1;
data.xelem (ii + j) = data_tmp [j];
}
ii = nz;
}
ridx.resize (ii);
cidx.resize (ii);
data.resize (ii);
SparseMatrix sm (data, ridx, cidx, nr, nc);
retval(0) = sm;
std::cout << "Assembling Vector from the linear form..."
<< std::endl;
dim_vector dim;
dim.resize (2);
dim(0) = B.size ();
dim(1) = 1;
Array<double> myb (dim), myc (dim);
for (std::size_t i = 0; i < B.size (); ++i)
{
myb.xelem (i) = B[i];
myc.xelem (i) = x[i];
}
retval(1) = myb;
retval(2) = myc;
}
}
else
error ("assemble_system: unknown size");
}
}
}
return retval;
}