Learn how easy it is to sync an existing GitHub or Google Code repo to a SourceForge project! See Demo

Close

[3f3db1]: doc / doc.tex Maximize Restore History

Download this file

doc.tex    2176 lines (1633 with data), 71.3 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
\documentclass[a4paper,11pt]{book}
\usepackage[utf8x]{inputenc}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{cclicenses}
\usepackage{url}
\usepackage{listings}
\usepackage{hyperref}
\usepackage{listings}
\usepackage[cmyk]{xcolor}
\usepackage{import}
\usepackage[english]{babel}
\usepackage[T1]{fontenc}
\usepackage[framemethod=TikZ]{mdframed}
\usepackage{parcolumns}
\usepackage[strict]{changepage}
\definecolor{dkgreen}{rgb}{0,0.6,0}
\definecolor{gray}{rgb}{0.5,0.5,0.5}
\definecolor{mauve}{rgb}{0.58,0,0.82}
\definecolor{BlueLUH}{cmyk}{1.0,0.7,0,0}
\colorlet{LightBlue}{BlueLUH!7!white}
\lstset{
backgroundcolor=\color{LightBlue},
basicstyle={\small\ttfamily},
language=C++,
aboveskip=3mm,
belowskip=3mm,
showstringspaces=false,
columns=flexible,
numbers=left,
numberstyle=\tiny\color{gray},
keywordstyle=\color{blue},
commentstyle=\color{dkgreen},
stringstyle=\color{mauve},
breaklines=true,
breakatwhitespace=true
tabsize=2
}
\def\changemargin#1#2{\list{}{\rightmargin#2\leftmargin#1}\item[]}
\let\endchangemargin=\endlist
\begin{document}
\begin{titlepage}
\begin{center}
% Upper part of the page. The '~' is needed because \\
% only works if a paragraph has started.
\textsc{\LARGE Google Summer of Code 2013}\\[0.5cm]
\textsc{\Large GNU-Octave}\\[2.5cm]
%\includegraphics[width=1.\textwidth]{./octave-header.png}~\\[1.5cm]
{ \huge \bfseries Fem-fenics \\[0.5cm] }
{ \Large \bfseries Genaral Purpose Finite Element Library for GNU-Octave \\[2.4cm] }
% Author and supervisor
%\begin{minipage}{0.4\textwidth}
%\begin{flushleft} \large
%\emph{Author:}\\
Marco \textsc{Vassallo}\\[0.5cm]
%matr. 780787
%\end{flushleft}
%\end{minipage}
%\begin{minipage}{0.4\textwidth}
%\begin{flushright} \large
%\emph{Supervisor:} \\
%Dr.~Carlo \textsc{de Falco}
%\end{flushright}
%\end{minipage}
\vfill
% Bottom of the page
{\large Version 0.0 \\[0.5cm]}
{\large \today}
\end{center}
\end{titlepage}
\frontmatter
\tableofcontents
\mainmatter
\chapter{Introduction}
Fem-fenics is an open source package (pkg) for the resolution of partial differential equations with Octave.
The project has been developed during the Google Summer of Code 2013 with the help and the sustain of the GNU-Octave
community under the supervision of prof. De Falco.
The report is structured as follows:
\begin{itemize}
\item in chapter \ref{intr} we provide a simple reference guide for beginners
\item in chapter \ref{impl} is presented a detailed explanation of the relevant parts of the program. In this way, the
interested reader can see what there is ``behind'' and expecially anyone interested in it can learn quickly how
it is possible to extend the code and contribute to the project.
\item in chapter \ref{exem} more examples are provided. For a lot of them, we present the octave script
alongside the code for Fenics (in C++ and/or Python) in order to provide the user with a quick reference
guide.
\end{itemize}
If you think that going inside the report could be boring, it is available a wiki at
\begin{center}
\url{http://wiki.octave.org/Fem-fenics}
\end{center}
while if you want to see how the project has grown during the time you can give a look at
\begin{center}
\url{http://gedeone-gsoc.blogspot.com/}
\end{center}
The API is available as Appendix \ref{app} but also at the following address
\begin{center}
\url{http://octave.sourceforge.net/fem-fenics/overview.html}
\end{center}
and if you would like to contribute to the project or give a look to the source code
you can clone it from the following repository using Mercurial
\begin{center}
\url{http://sourceforge.net/p/octave/fem-fenics/} .
\end{center}
The pkg is provided with an example function \texttt{femfenics\_examples}
which allows the user to select and run one of the examples provided with the pkg.
\chapter{Introduction to Fem-fenics}\label{intr}
\section{Installation}
Fem-fenics is an external package for Octave, which means that it can be installed only once that Octave has been
successfully installed on the PC. Furthermore, as Fem-fenics is based on Fenics,
it is also needed a running version of the latter. They can be easily installed following the guidelines provided
on the official Octave \cite{instoctave} and Fenics \cite{instfenics} websites.
Once that Octave and Fenics are correctly installed, to install Fem-fenics open Octave (which now is provided with a new
amazing GUI) and type
\begin{verbatim}
>> pkg install fem-fenics -forge
\end{verbatim}
That's all! For any problem during the installation don't hesitate to contact us.
To be sure that everything is working fine, load the fem-fenics pkg and run
one of the examples provided within the package:
\begin{verbatim}
>> pkg load fem-fenics
>> femfenics_examples()
\end{verbatim}
For a description of the examples, look at chapter \ref{exem}.
\paragraph*{NOTE} For completing the installation process successfully,
the form compiler FFC and the header file dolfin.h should also be available on the machine.
They are managed automatically by Fenics if it is installed as a binary package or with Dorsal.
If it has been done manually, please be sure that they are available before starting the
installation of Fem-fenics.
\section{General layout and first example}\label{genlayout}
A generic problem has to be solved in two steps:
\begin{enumerate}
\item a \textbf{.ufl file} where the abstract problem is described: this file has to be written in Unified Form Language (UFL),
which is a domain specific language for defining discrete variational forms and functionals in a notation
close to pen-and-paper formulation. UFL is easy to learn, and the User manual provides explanations
and examples \cite{ufl}.
\item a script file \textbf{.m} where the abstract problem is imported and a specific problem is implemented and solved:
this is the script file where the fem-fenics functions described in the following chapters are used.
\end{enumerate}
We provide immediately a simple example in order to familiarize the user with the code.
\paragraph{The Poisson equation}
In this example, we show how it is possible to solve the Poisson equation with mixed Boundary Conditions.
If we indicate with $\Omega$ the domain and with $\Gamma = \Gamma_{N} \cup \Gamma_{D}$ the
boundaries, the problem can be expressed as
\begin{align*}
\Delta u &= f \qquad \text{on } \Omega \\
u &= 0 \qquad \text{on } \Gamma_{D} \\
\nabla u \cdot n &= g \qquad \text{on } \Gamma_{N}
\end{align*}
where $f, \, g$ are data which represent the source and the flux
of the scalar variable $u$.
A possible variational formulation of the problem is: \\
find $u \in H_{0, \Gamma_{D}}^{1} :$
\begin{align*}
a(u, v) &= L(v) \qquad \forall v \in H_{0, \Gamma_{D}}^{1} \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \\
L(v) &= \int_{\Omega} f v + \int_{\Gamma_{N}} g v \\
\end{align*}
The abstract problem can thus be written in the \verb|Poisson.ufl| file immediately.
The only thing that has to be specified at this stage is the space of Finite Elements
used for the discretization of $H_{0, \Gamma_{D}}^{1}$. In this example,
we choose the space of continuous lagrangian polynomial of degree one
\begin{lstlisting}[numbers=none]
FiniteElement("Lagrange", triangle, 1)
\end{lstlisting}
but many more possibilities are available.
\subparagraph{Poisson.ufl}
\begin{lstlisting}
element = FiniteElement("Lagrange", triangle, 1)
u = TrialFunction(element)
v = TestFunction(element)
f = Coefficient(element)
g = Coefficient(element)
a = inner(grad(u), grad(v))*dx
L = f*v*dx + g*v*ds
\end{lstlisting}
It is always a good idea to check if the ufl code is correctly written before importing it into Octave. Typing
\begin{lstlisting}[numbers=none, language = Octave]
>> ffc -l dolfin Poisson.ufl
\end{lstlisting}
in the shell shouldn't produce any error.
We can now implement and solve a specific instance of the Poisson problem with Octave.
The parameters are set as follow
\begin{itemize}
\item $\Omega = [0, 1]\times[0, 1]$
\item $\Gamma_{D} = {(0, y) \cup(1, y)} \ \subset \partial\Omega$
\item $\Gamma_{N} = {(x, 0) \cup(x, 1)} \ \subset \partial\Omega$
\item $f = 10 \exp \dfrac{(x-0.5)^{2} + (y-0.5)^{2}}{0.02}$
\item $g = \sin(5x)$
\end{itemize}
As a first thing we need to load into Octave the pkgs previously installed
\begin{lstlisting}[numbers=none, language = Octave]
pkg load fem-fenics msh
\end{lstlisting}
The ufl file can thus be imported inside Octave. For every specific element defined inside the ufl file
there is a specific function which stores it for later use
\begin{itemize}
\item \verb$ufl_import_FunctionSpace ('Poisson')$ is a function which looks for the finite element
space defined inside the file called Poisson.ufl; if everything is ok, it generates a function
which we will use later
\item \verb$ufl_import_BilinearForm ('Poisson')$ is a function which looks for the rhs of the
equation, i.e. for the bilinear form defined inside Poisson.ufl
\item \verb$ufl_import_LinearForm ('Poisson')$ is a function which looks for the linear
form.
\end{itemize}
In some cases one could be interested in using these functions separately but if,
as in our example, all the three elements are defined in the same ufl file (and only in this case),
the \verb$import_ufl_Problem ('Poisson')$ can be used, which generates at once all
the three functions described above
\begin{lstlisting}[numbers=none, language = Octave]
ufl_import_Problem ('Poisson');
\end{lstlisting}
To set the concrete elements which define the problem,
the first things to do is to create a mesh.
It can be managed easily using the msh pkg. For a structured squared mesh
\begin{lstlisting}[numbers=none, language = Octave]
x = y = linspace (0, 1, 33);
msho = msh2m_structured_mesh (x, y, 1, 1:4);
\end{lstlisting}
Once that the mesh is available, we can thus initialize the
Fem-fenics mesh using the function \verb$Mesh ()$:
\begin{lstlisting}[numbers=none, language = Octave]
mesh = Mesh (msho);
\end{lstlisting}
To initialize the functional space, we have to specify as argument only the fem-fenics mesh,
because the finite element type and the polynomial degree have already been specified in the ufl file:
\begin{lstlisting}[numbers=none, language = Octave]
V = FunctionSpace('Poisson', mesh);
\end{lstlisting}
Essential BC can now be applied using \verb$DirichletBC ()$; this function receives as argument the functional space,
a function handle which specifies the value to set, and the label of the sides where the BC applies.
In this case, homogenous boundary conditions hold on the left and right side of the square
\begin{lstlisting}[numbers=none, language = Octave]
bc = DirichletBC(V, @(x, y) 0.0, [2; 4]);
\end{lstlisting}
The last thing to do before solving the problem, is to set the coefficients specified
in the ufl file.
To set them, the function \verb$Expression ()$ can be used passing as argument a string
which specifies the name of the coefficient
(it is important that they are called in the same way as in the ufl file:
the source term 'f' and the normal flux 'g'),
and a function handle with the value prescribed:
\begin{lstlisting}[numbers=none, language = Octave]
ff = Expression ('f',
@(x,y) 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02));
gg = Expression ('g', @(x,y) sin (5.0 * x));
\end{lstlisting}
Another possibility for dealing with the coefficients defined in the ufl file would be to use
the function \verb$Constant ()$ or \verb$Function ()$.
The coefficients can thus be used together with the FunctionSpace to set
the Bilinear and the Linear form
\begin{lstlisting}[numbers=none, language = Octave]
a = BilinearForm ('Poisson', V, V);
L = LinearForm ('Poisson', V, ff, gg);
\end{lstlisting}
The discretized representation of our operator is obtained using the
functions \verb$assemble ()$ or \verb$assemble_system ()$, which also allow
to specify the BC(s) to apply
\begin{lstlisting}[numbers=none, language = Octave]
[A, b] = assemble_system (a, L, bc);
\end{lstlisting}
Here A is a sparse matrix and b is a column vector. All the
functionalities available within Octave can now be exploited to solve the linear system.
The easisest possibility is the backslash command:
\begin{lstlisting}[numbers=none, language = Octave]
u = A \ b;
\end{lstlisting}
Once that the solution has been obtained, the \verb$u$ vector is converted into a
Fem-fenics function and plotted \verb$plot ()$ or saved \verb$save ()$ in the vtu
format
\begin{lstlisting}[numbers=none, language = Octave]
u = Function ('u', V, sol);
save (u, 'poisson')
plot (u);
\end{lstlisting}
The complete code for the Poisson problem is reported below, while
in figure \ref{Poissonfig} is presented the output.
\begin{figure}
\begin{center}
\includegraphics[height=7 cm,keepaspectratio=true]{./Fem-fenics_poisson.png}
\caption{The result for the Poisson equation}
\label{Poissonfig}
\end{center}
\end{figure}
\subparagraph{Poisson.m}
\begin{lstlisting}[language=Octave]
#load the pkg and import the ufl problem
pkg load fem-fenics msh
import_ufl_Problem ('Poisson')
# Create the mesh and define function space
x = y = linspace (0, 1, 33);
mesh = Mesh(msh2m_structured_mesh (x, y, 1, 1:4));
V = FunctionSpace('Poisson', mesh);
# Define boundary condition and source term
bc = DirichletBC(V, @(x, y) 0.0, [2;4]);
ff = Expression ('f', @(x,y) 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02));
gg = Expression ('g', @(x,y) sin (5.0 * x));
#Create the Bilinear and the Linear form
a = BilinearForm ('Poisson', V, V);
L = LinearForm ('Poisson', V, ff, gg);
#Extract the matrix and compute the solution
[A, b] = assemble_system (a, L, bc);
sol = A \ b;
u = Function ('u', V, sol);
# Save solution in VTK format and plot it
save (u, 'poisson')
plot (u);
\end{lstlisting}
\chapter{Implementation}\label{impl}
Fem-fenics aims to fill a gap in Octave: even if there are packages for the creation of mesh \cite{msh},
for the postprocessing of data \cite{fpl} and for the resolution of some specific pde \cite{secs1d} \cite{bim},
no general purpose finite element library is available.
The goal of the project is thus to provide a package which can be used to solve user defined problems
and which is able to exploit the functionality provided with Octave.
\begin{figure}
\begin{center}
\includegraphics[height=10 cm,keepaspectratio=true]{./code_layout.png}
\caption{General layout of the package}
\label{Codelayout}
\end{center}
\end{figure}
Instead of writing a library starting from scratch, an interface to one of the finite element library
which are already available has been created.
Among the many libraries taken into account, the one which was best suited for our
purposes seemed to be the FEniCS project. It ``is a collection of free, open source, software
components with the common goal to enable automated solution of pde.''
In particular, Dolfin is the C++/Python interface of FEniCS, providing a consistent Problem
Solving Environment for ODE and PDE. The idea has been to create wrappers in Octave for C++ Dolfin,
in a similar way to what it has been done for Python.
This is a very natural choice, because Octave is mainly written in script language
and in C++. It is in fact possible to implement an Octave interpreter function in C++ through the
native oct-file interface or, conversely, to use Octave's Matrix/Array Classes in a C++ application
\cite{whatoctave}.
The works can be summarized as follows (fig. \ref{Codelayout}):
the elements already available in Octave for the resolution of PDE (Mesh and Linear
Algebra) have been exploited, and wrappers to the other FEniCS functions added.
To allow exchanges between these programs, the necessary functions
for converting an Octave mesh/matrix into a FEniCS one and viceversa have been written.
Two main ideas have guided us throughout the realization of the pkg:
\begin{itemize}
\item keep the syntax as close as possible to the original one in Fenics (Python)
\item make the interface as simple as possible.
\end{itemize}
\section{General layout of a class}\label{class}
Seven new classes are implemented for dealing with FEniCS objects and for using them inside Octave:
\begin{itemize}
\item \textbf{boundarycondition} stores and builds a dolfin::DirichletBC
\item \textbf{coefficient} stores an expression object which is used for the
evaluation of user defined values
\item \textbf{expression} is needed for internal use only as explained below
\item \textbf{form} stores a general dolfin::Form and can be used both for
a dolfn::BilinearForm and for a dolfin::LinearForm
\item \textbf{function} for the dolfin::Function objects
\item \textbf{functionspace} stores the user defined FunctionSpace
\item \textbf{mesh} converts a PDE-tool like mesh structure in a dolfin::Mesh
\end{itemize}
The classes are written with the ``usual'' C++ style, but they need to be derived publicly
from octave\_base\_value and to be added to the Octave interpreter \cite{whatoctave}.
When a type is used for the first time during a session, it is also temporarily
registered in the interpreter after all the other basic types (int, double, ...).
The general layout of a class can thus be kept simple and with the main purpose of storing
the associated FEniCS objects, which is done throughout
boost::shared\_ptr< > to the corresponding FEniCS type.
All the classes also implement at least two constructors:
a default one which is necessary to register a type in the Octave interpreter,
and a constructor which takes as argument the corresponding dolfin type.
As an example, the form class implementation follows, while classes which differ from the general
layout are presented below in more details.
\begin{lstlisting}
#ifndef _FORM_OCTAVE_
#define _FORM_OCTAVE_
#include <memory>
#include <vector>
#include <dolfin.h>
#include <octave/oct.h>
class form : public octave_base_value
{
public:
form () : octave_base_value () {}
form (const dolfin::Form _frm)
: octave_base_value (), frm (new dolfin::Form (_frm)) {}
form (boost::shared_ptr <const dolfin::Form> _frm)
: octave_base_value (), frm (_frm) {}
void
print (std::ostream& os, bool pr_as_read_syntax = false) const
{
os << "Form " << ": is a form of rank " << frm->rank ()
<< " with " << frm->num_coefficients ()
<< " coefficients" << std::endl;
}
~form(void) {}
bool is_defined (void) const { return true; }
const dolfin::Form & get_form (void) const { return (*frm); }
const boost::shared_ptr <const dolfin::Form> &
get_pform (void) const { return frm; }
private:
boost::shared_ptr <const dolfin::Form> frm;
DECLARE_OCTAVE_ALLOCATOR;
DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA;
};
static bool form_type_loaded = false;
DEFINE_OCTAVE_ALLOCATOR (form);
DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (form, "form", "form");
#endif
\end{lstlisting}
\subsection{Shared pointer}
In all the classes presented above, the private members are stored using
a boost::shared\_ptr< > to the corresponding FEniCS type.
This is done because we have to refer in several places to resources which are built dynamically
and we want that they are destroyed only
when the last reference is destroyed \cite{Formaggia_smart}.
For example, if we have two different functional spaces in the same problem,
like with Navier-Stokes for the velocity and the pressure, the mesh is shared between
them and no one has its own copy.
Furthermore, they are widely supported inside DOLFIN, and it can thus be avoided to have a copy of the
same object for FEniCS and another one for DOLFIN: there is just one copy which is shared between DOLFIN
and FEniCS.
\subsection{The mesh class}
In addition to usual methods, the mesh class implemens functionalities which allow to deal with meshes
as they are currently available with the msh pkg, i.e. in the (p, e, t) format, and in Fenics, i.e.
in the xml Dolfin format.
It is therefore necessary to have two different constructors
\begin{lstlisting}[numbers=none]
mesh (Array<double>& p, Array<octave_idx_type>& e,
Array<octave_idx_type>& t);
mesh (std::string _filename)
: octave_base_value (), pmsh (new dolfin::Mesh(_filename)) {}
\end{lstlisting}
where the first one accepts as input a mesh in (p, e, t) format and converts it into a xml one, while
the latter loads the mesh stored in the \_filename.xml file.
The constructors are used within the Mesh () function, which therefore accepts as argument
either a mesh generated within the msh pkg or a string with the name of the file
where the dolfin mesh is stored.
Furthermore, if a mesh is stored in another different format,
the program dolfin-convert can try to convert it to the dolfin xml format.
For example, for a mesh generated with Metis:
\begin{lstlisting}[numbers=none, language=bash]
Shell:
>> dolfin-convert msh.gra msh.xml
\end{lstlisting}
and then inside the Octave script:
\begin{lstlisting}[numbers=none, language=Octave]
mesh = Mesh ('msh.xml');
\end{lstlisting}
Before exploring the code in more details, the main differences between the two storing formats are presented using
the very simple, but rather instructive, example of a unit square mesh with just two elements, fig. \ref{mesh}.
\paragraph{pet}
\begin{figure}
\begin{center}
\includegraphics[height=5 cm,keepaspectratio=true]{./mesh_1.png}
\caption{The (very) simple mesh for our example}
\label{mesh}
\end{center}
\end{figure}
A mesh is represented using the three matrices $p$, $e$, $t$, and, using msh,
we can easily obtain the mesh for our example typing
\begin{lstlisting}[numbers=none, language=octave]
mesh = msh2m_structured_mesh ([0 1], [0 1], 1, [11 12 12 13])
\end{lstlisting}
The matrix $p$ stores information about the coordinates of the vertices
\begin{mdframed}[backgroundcolor=LightBlue, outerlinewidth=0.25pt,linecolor=LightBlue]
\begin{lstlisting}[numbers=none, language=octave]
>> mesh.p
\end{lstlisting}
$
\begin{array}{rrrrl}
\; 0 & 0 & 1 & 1 & \quad \text{x-coordinates} \\
\; 0 & 1 & 0 & 1 & \quad \text{y-coordinates} \\
\end{array}
$
\end{mdframed}
Thus the vertex in the $n^{th}$ column is labelled as the vertex number $n$, and so on.
The matrix $t$ stores information about the connectivity
\begin{mdframed}[backgroundcolor=LightBlue, outerlinewidth=0.25pt,linecolor=LightBlue]
\begin{lstlisting}[numbers=none, language=octave]
>> mesh.t
\end{lstlisting}
$
\begin{array}{rrl}
\; 1 & 1 & \quad \text{number of the first vertex of the element} \\
\; 3 & 4 & \quad \text{number of the second vertex of the element} \\
\; 4 & 2 & \quad \text{number of the third vertex of the element} \\
\; 0 & 0 & \\
\end{array}
$
\end{mdframed}
The first element is thus the one obtained connecting vertices 1-3-4 and so on.
The matrix $e$ stores information related to every side edge,
like the number of the vertices of the boundary elements,
and the number of the geometrical border containing the edge,
which is a convenient way to deal with boundary conditions in a problem.
\begin{mdframed}[backgroundcolor=LightBlue, outerlinewidth=0.25pt,linecolor=LightBlue]
\begin{lstlisting}[numbers=none, language=octave]
>> mesh.e
\end{lstlisting}
$
\begin{array}{rrrrl}
\; 1 & 3 & 2 & 1 & \quad \text{first vertex of the side edge} \\
\; 3 & 4 & 4 & 2 & \quad \text{second vertex of the side edge} \\
\; 0 & 0 & 0 & 0 & \text{} \\
\; 0 & 0 & 0 & 0 & \text{} \\
\; 11 & 12 & 12 & 13 & \quad \text{label of the geometrical border containing the edge} \\
\; 0 & 0 & 0 & 0 & \text{}\\
\; 1 & 1 & 1 & 1 & \text{} \\
\end{array}
$
\end{mdframed}
The side edge between vertex 1-3 is labelled 11, between 3-4 is 12...
\paragraph{dolfin xml} A mesh is an object of the dolfin::Mesh class which stores information only about
the coordinates of the vertices (like $p$) and the information about the connectivity (like $t$).
A mesh can thus be manipulated using the functions and the methods of the class, which are presented below.
Instead, the information about boundaries is not directly stored in the mesh.
The mesh used in the example is stored as
\begin{lstlisting}[numbers=none, language=xml]
<?xml version="1.0"?>
<dolfin xmlns:dolfin="http://fenicsproject.org">
<mesh celltype="triangle" dim="2">
<vertices size="4">
<vertex index="0" x="0.000e+00" y="0.000e+00" />
<vertex index="1" x="0.000e+00" y="1.000e+00" />
<vertex index="2" x="1.000e+00" y="0.000e+00" />
<vertex index="3" x="1.000e+00" y="1.000e+00" />
</vertices>
<cells size="2">
<triangle index="0" v0="0" v1="2" v2="3" />
<triangle index="1" v0="0" v1="1" v2="3" />
</cells>
</mesh>
</dolfin>
\end{lstlisting}
\paragraph{Conversion between the formats}
The first necessary step in our way to a package which links Octave and FEniCS
is to convert a mesh from the $(p, e, t)$ format
into the dolfin xml one.
Furthermore, as dolfin provides methods and functions which
allow to manipulate a mesh and which don't have a conterpart in the msh pkg,
we have also created wrappers for them (specifically for mesh::refine).
As it has been shown above, the main difference between $(p, e, t)$ and DOLFIN $xml$
is the way in which the boundaries are distinguished.
The former stores all the information in the $e$ matrix, while the latter uses
the functions and the methods of the dolfin::mesh class to set/get information about a mesh.
The most useful classes available in dolfin are recalled
\begin{itemize}
\item \textbf{MeshIterator}
To know whether an edge belongs or not to the boundary, we can iterate over all the
edges of our mesh using the classes provided by DOLFIN:
\begin{lstlisting}[numbers=none]
for (dolfin::FacetIterator f (mesh); ! f.end (); ++f)
{
if ((*f).exterior () == true)
{
//do something with the boundary cells
}
}
\end{lstlisting}
\item \textbf{MeshFunction}
To store data related to a mesh, dolfin provides the template class MeshFunctions.
"A MeshFunction is a function that can be evaluated at a set of mesh entities.
A MeshFunction is discrete and is only defined at the set of mesh entities of a fixed topological dimension.
A MeshFunction may for example be used to store a global numbering scheme for the entities of a (parallel) mesh,
marking sub domains or boolean markers for mesh refinement." \cite{meshfunction}
For example, in the function \verb$mshm_refine$ of the msh package, the list of cells to be refined
is stored as a MeshFunction, which for every cell says whether or not it has to be refined:
\begin{lstlisting}[numbers=none]
dolfin::CellFunction<bool> cell_markers (mesh);
cell_markers.set_all (false);
for (octave_idx_type i = 0;
i < cells_to_refine.length (); ++i)
cell_markers.set_value (cells_to_refine (i) , true);
\end{lstlisting}
\item \textbf{MeshValueCollection} "It differs from the MeshFunction class in two ways.
First, data do not need to be associated with all entities (only a subset).
Second, data are associated with entities through the corresponding cell index and local entity number
(relative to the cell), not by global entity index, which means that data may be stored robustly to file."\cite{meshvalue}
It is thus obvious that it is better to use the MeshValueCollection whenever saving or writing a mesh.
\end{itemize}
The container classes presented above can be used by their own,
but to set/get data from a mesh it is better to use the methods provided by the classes:
\begin{itemize}
\item \textbf{MeshDomains} "The class MeshDomains stores the division of a Mesh into subdomains.
For each topological dimension 0 <= d <= D, where D is the topological dimension of the Mesh,
a set of integer markers are stored for a subset of the entities of dimension d,
indicating for each entity in the subset the number of the subdomain.
It should be noted that the subset does not need to contain all entities of any given dimension;
entities not contained in the subset are ���unmarked���." \cite{meshdomain}
\item \textbf{MeshData} "The class MeshData is a container for auxiliary mesh data,
represented either as MeshFunction over topological mesh entities, arrays or maps.
Each dataset is identified by a unique user-specified string." \cite{meshdata}
\end{itemize}
\subparagraph{Geometry from (p, e, t) to dolfin xml}
Converting the vertices and cells from (p, e, t) in the xml format can be done using the
dolfin editor, while caution has to be taken for storing information associated with boundaries
and subdomains, as presented in the next paragraph.
\begin{lstlisting}[numbers=none]
dolfin::MeshEditor editor;
boost::shared_ptr<dolfin::Mesh> msh (new dolfin::Mesh ());
editor.open (*msh, D, D);
editor.init_vertices (p.cols ());
editor.init_cells (t.cols ());
if (D == 2)
{
for (uint i = 0; i < p.cols (); ++i)
editor.add_vertex (i,
p.xelem (0, i),
p.xelem (1, i));
for (uint i = 0; i < t.cols (); ++i)
editor.add_cell (i,
t.xelem (0, i) - 1,
t.xelem (1, i) - 1,
t.xelem (2, i) - 1);
}
if (D == 3)
{
...
}
editor.close ();
\end{lstlisting}
\subparagraph{Subdomain markers: from (p, e, t) to dolfin xml}
There are no fundamental differences between the 2D and 3D case,
and they are thus treated together referring to the
general dimension D.
The subdomain information is contained in the t matrix,
and it is temporarily copied to a MeshValueCollection.
For every column of the $t$ matrix, i.e. for every element of the mesh,
we have to look for the corresponding element in the DOLFIN mesh.
We use the class MeshIterator for moving around on the DOLFIN mesh:
\begin{lstlisting}[numbers=none]
dolfin::MeshValueCollection<uint> my_cell_marker (D);
for (uint i = 0; i < num_cells; ++i)
dolfin::Vertex v (mesh, t(0, i));
for (dolfin::CellIterator f (v); ! f.end (); ++f)
{
if ((*f) == all_vertices_in_the_ith_column)
{
my_cell_marker.set_value
((*f).index (), t(last_row, i), mesh);
break;
}
}
\end{lstlisting}
The \verb$all_vertices_in_the_ith_column$ is just like a pseudo code:
we have to be sure that the Cell pointed by f is the one corresponding
to the $i^{th}$ column of the matrix, checking the vertices one-by-one:
in $2D$ the cell is a triangle, and we thus have to check $3$ vertices.
As we don't know the order in which vertices are visited, we have to check all the $3! = 6$
different combinations:
\begin{lstlisting}[numbers=none]
...
if ((*f).entities(0)[0] == t(0, i)
&& (*f).entities(0)[1] == t(1, i)
&& (*f).entities(0)[2] == t(2, i)
|| ... check the other 5 possibilities... )
....
\end{lstlisting}
where the \verb$entities(std::size_t dim)$ method returns an array with the indexes of the elements
of dimension dim. Thus we use $dim = 0$ as we are looking for vertices.
In the $3D$ case, our cell is a tetrahedron, and we have to check all the $4! = 24$ possibilities,
each of which is composed by $4$ assertions; in total we have almost one hundred conditions!
Now that the information is stored in our function, it can be associated to the mesh
\begin{lstlisting}[numbers=none]
*(mesh.domains ().markers (D)) = my_marked_cell;
\end{lstlisting}
\subparagraph{Subdomain markers: from dolfin xml to (p, e, t)}
In the DOLFIN .xml file, the information is stored like:
\begin{lstlisting}[numbers=none]
...
<mesh_value_collection name="m" type="uint" dim="2" size="2">
<value cell_index="0" local_entity="0" value="1"/>
<value cell_index="1" local_entity="0" value="2"/>
...
\end{lstlisting}
When the file is read using DOLFIN, the information is automatically associated with the mesh
as a MeshValueCollection named \verb$cell_domains$, which can be accessed to extract the information
using the MeshDomains class.
Obviously we have to be sure that the information is available within
the file that we are reading, and that it is related to Cell, i.e. to elements of dimension D,
before it is associated to the last row of the $t$ matrix:
\begin{lstlisting}[numbers=none]
dolfin::MeshFunction<uint> my_cell_marker;
if (! mesh.domains ().is_empty ())
if (mesh.domains ().num_marked (D) != 0)
my_cell_marker = *(mesh.domains ().cell_domains ());
for (j = 0; j < t.cols (); ++j)
t(D + 1, j) = my_cell_marker[j];
\end{lstlisting}
\subparagraph{Boundary Markers}
For boundary markers, things work in a similar way, as long as we remember that we are working with objects of
dimension D - 1.
In this case, the main difference is in the .xml file: it is no longer enough to say
to what cell element the label is referred to, but we have to specify to which $D - 1$
entity (a side or a face) the label is referred.
For example:
\begin{lstlisting}[numbers=none]
....
mesh_value_collection name="m" type="uint" dim="1" size="4">
<value cell_index="0" local_entity="0" value="12"/>
<value cell_index="0" local_entity="2" value="11"/>
<value cell_index="1" local_entity="0" value="12"/>
<value cell_index="1" local_entity="2" value="13"/>
...
\end{lstlisting}
The cell number $"0"$ is a triangle,
and to the \verb$local_entity$ number $"0"$, i.e. to the side number $"0"$,
is associated the label $"12"$, while to the side number $"2"$ is associated the label $"11"$.
To the side number $"1"$, there are no labels associated.
The number of the \verb$local_entity$ refers to the enumeration of the reference element.
In any case, it is DOLFIN which takes care of the conversion of indeces from this format to the usual one,
and we can thus use methods and functions as explained for the subdomain markers.
\subparagraph{Mesh refine}
Now that it is possible to convert meshes between Octave and DOLFIN,
the functions available in the dolfin::mesh class can be used to improve the
functionality of the msh package.
For the moment, it has been added the possibility of refining a mesh,
either uniformly or specifying the list of the vertices we want to be refined.
The function is now part of the msh pkg\cite{msh}, and a more detailed desciption has been
provided previously \cite{refine}.
\subsection{The functionspace class}
A dolfin::FunctionSpace is defined by specifying a mesh and the type of the finite element which we want to use.
The mesh is handled as presented above, while the FE are specified inside the .ufl file. Possible choices are
\cite{logg2012automated}:
\begin{center}
\begin{tabular}{ l | l }
\hline
\textbf{Finite Element Space} & \textbf{Symbol} \\ \hline \hline
Argyris & ARG * \\ \hline
Arnold���Winther & AW * \\ \hline
Brezzi���Douglas���Marini & BDM\\ \hline
Crouzeix���Raviart & CR\\ \hline
Discontinuous Lagrange & DG\\ \hline
Hermite & HER*\\ \hline
Lagrange & CG\\ \hline
Mardal���Tai���Winther & MTW *\\ \hline
Morley & MOR*\\ \hline
N��d��lec 1st kind H (curl) & N1curl\\ \hline
N��d��lec 2nd kind H (curl) & N2curl\\ \hline
Raviart���Thomas & RT\\
\end{tabular}
\end{center}
where the Finite Elements denoted with * are not yet fully supported inside FEniCS.
\section{General layout of a function}
There are two general kinds of functions in the code: functions which create an abstract problem
(wrappers to UFL) and
functions which create the specific instance of a problem and discretize it (wrapper to DOLFIN).
\section{Wrappers to UFL}
As stated in section \ref{genlayout}, a problem is divided in two files: a \texttt{.ufl} file
where the abstract problem is described in Unified Form Language (UFL),
and a script file \texttt{.m} where a specific problem is implemented and solved.
We suppose that they are called \texttt{Poisson.ufl} and \texttt{Poisson.m} .
In order to use the information stored in the UFL file, i.e. the bilinear and the linear form,
they have to be ``imported'' inside Octave. This is done using the
functions \texttt{import\_ufl\_BilinearForm, import\_ufl\_LinearForm, ...} .
\subsection{Generation of code on the fly}
When a UFL file is compiled using the ffc compiler, a header file \texttt{Poisson.h} is generated.
In this header file, it is defined the Poisson class, which derives from dolfin::Form,
and the constructor for the bilinear and linear form are set.
This file is thus available only at compilation time, but it has to be included somehow
in the wrapper function for the Bilinear and the Linear form.
An easy solution would have been to write a set of pre established problems where the user could only
change the values of the coefficient for a specific problem;
but, as we want to let the user free to write his own
variational problem, a different approach has been adopted.
The \texttt{ufl} file is compiled at run time and generates its header file.
Then, a Poisson.cc file is written from a template which takes as input the name
of the header file and is compiled including the Poisson.h file;
now the corresponding Octave functions for the specific problem are available and
will be later used from
\texttt{BilinearForm, LinearForm, FunctionSpace, ...} .
As an example it is presented the import\_ufl\_BilinearForm function.
\begin{lstlisting}[language=Octave]
function import_ufl_BilinearForm (var_prob)
...
%the function which writes the var_prob.cc file (see below)
generate_rhs (var_prob);
%the function which writes the makefile
generate_makefile (var_prob, private);
% the makefile is executed in a terminal:
% 1) generate the header file from ufl
% ffc -l dolfin var_prob.ufl
% 2) compile the var_prob.cc
% mkoctfile var_prob.cc -I.
system (sprintf ("make -f Makefile_%s rhs", var_prob));
...
endfunction
\end{lstlisting}
\begin{lstlisting}[language=Octave]
function output = generate_rhs (ufl_name)
STRING ="
#include "@@UFL_NAME@@.h"
...
DEFUN_DLD (@@UFL_NAME@@_BilinearForm, args, , ""A = fem_rhs_@@UFL_NAME@@ (FUNCTIONAL SPACE, COEFF)"")
{
...
const functionspace & fspo1
= static_cast<const functionspace&> (args(0).get_rep ());
const functionspace & fspo2
= static_cast<const functionspace&> (args(1).get_rep ());
const dolfin::FunctionSpace & U = fspo1.get_fsp ();
const dolfin::FunctionSpace & V = fspo2.get_fsp ();
@@UFL_NAME@@::BilinearForm a (U, V);
...
}";
STRING = strrep (STRING, "@@UFL_NAME@@", ufl_name);
fid = fopen (sprintf ("%s_BilinearForm.cc", ufl_name), 'w');
fputs (fid, STRING);
output = fclose (fid);
endfunction
\end{lstlisting}
\section{Wrappers to DOLFIN}
The general layout of a function is very simple and it is composed of 4 steps which we describe using an example:
\begin{lstlisting}
DEFUN_DLD (FunctionSpace, args, , "initialize a FunctionSpace from a mesh")
{
// 1 read data
const mesh & msho = static_cast<const mesh&> (args(0).get_rep ());
// 2 extract the data stored in the Octave class as a DOLFIN object
const dolfin::Mesh & mshd = msho.get_msh ();
// 3 build a new object or extract the information needed using DOLFIN
boost::shared_ptr <const dolfin::FunctionSpace> g (new Laplace::FunctionSpace (mshd));
// 4 convert the new object from DOLFIN to Octave and return it
octave_value retval = new functionspace(g);
return retval;
}
\end{lstlisting}
All the functions presented above follow this general structure, and thus here we present
in detail only functions which present some differences.
\subsection{DirichletBC and Coefficient}
These two functions take as input a function handle which cannot be directly evaluated by
a dolfin function to set, respectively, the value on the boundary or the value of the coefficient.
It has thus been derived from dolfin::Expression a class "expression" which has as private member
an octave function handle and which overloads the function eval(). In this way, an object of
the class expression can be initialized throughout a function handle and can be used inside dolfin because
"it is" a dolfin::Expression
\begin{lstlisting}
class expression : public dolfin::Expression
{
...
void
eval (dolfin::Array<double>& values,
const dolfin::Array<double>& x) const
{
octave_value_list b;
b.resize (x.size ());
for (std::size_t i = 0; i < x.size (); ++i)
b(i) = x[i];
octave_value_list tmp = feval (f->function_value (), b);
Array<double> res = tmp(0).array_value ();
for (std::size_t i = 0; i < values.size (); ++i)
values[i] = res(i);
}
private:
octave_fcn_handle * f;
};
\end{lstlisting}
\paragraph{DirichletBC}
The BC are imposed directly to the mesh setting to zero all the off diagonal elements
in the corresponding line. This means that we could loose the symmetry of the matrix, if any.
To avoid this problem, instead of the method \verb$apply()$ it is possible to use the
function \verb$assemble_system()$ , which preserves the symmetry of the system but which needs to build
together the lhs and the rhs.
\paragraph{Coefficient}
The coefficient of the variational problem can be specified using either a Coefficient
or a Function. They are different objects which behave in different ways: a Coefficient, as exlained above,
overloads the \verb$eval()$ method of the dolfin::Expression class and it is evaluated at
run time using the octave function \verb$feval()$. A Function instead doesn't need to be evaluated
because it is assembled copying element-by-element the values contained in the input vector.
\subsection{Sparse Matrices}
The \texttt{assemble} function discretizes the continuos problem and
returns a matrix. To deal with problems of big size, the matrices are stored
using a compressed technique \cite{Formaggia_matr} both in DOLFIN and in Octave.
Unfortunately, DOLFIN uses row major orientation while Octave uses
column major orientation. They have thus to be converted efficiently from
one type to the other.
\begin{lstlisting}[language=C++]
#include "form.h"
#include "boundarycondition.h"
DEFUN_DLD (assemble, args, nargout, " ")
{
int nargin = args.length ();
octave_value_list retval;
if (! boundarycondition_type_loaded)
{
boundarycondition::register_type ();
boundarycondition_type_loaded = true;
mlock ();
}
if (! form_type_loaded)
{
form::register_type ();
form_type_loaded = true;
mlock ();
}
...
// Extract form object from the input
const form & frm = static_cast<const form&> (args(0).get_rep ());
const dolfin::Form & a = frm.get_form ();
a.check ();
...
// Assemble the Matrix in DOLFIN
dolfin::parameters["linear_algebra_backend"] = "uBLAS";
dolfin::Matrix A;
dolfin::assemble (A, a);
// Extract BC from input and apply BC
...
const boundarycondition & bc
= static_cast<const boundarycondition&> (args(i).get_rep ());
const std::vector<boost::shared_ptr <const dolfin::DirichletBC> >
& pbc = bc.get_bc ();
for (std::size_t j = 0; j < pbc.size (); ++j)
pbc[j]->apply(A);
// Get capacity of the dolfin sparse matrix
boost::tuples::tuple<const std::size_t*,
const std::size_t*,
const double*, int>
aa = A.data ();
// Create the Matrix for Octave
...
for (std::size_t i = 0; i < nr; ++i)
{
A.getrow (i, cidx_tmp, data_tmp);
nz += cidx_tmp.size ();
for (octave_idx_type j = 0;
j < cidx_tmp.size (); ++j)
{
orow [ii + j] = i;
oc [ii + j] = cidx_tmp [j];
ov [ii + j] = data_tmp [j];
}
ii = nz;
}
dims(0) = ii;
ridx.resize (dims);
cidx.resize (dims);
data.resize (dims);
SparseMatrix sm (data, ridx, cidx, nr, nc);
retval(0) = sm;
...
return retval;
}
\end{lstlisting}
\subsection{Polymorphism}
The objects which belong to the new classes presented in section \ref{class}
have to overload some of the methods already available in Octave.
For example, we want to be able to \texttt{plot} a \texttt{Mesh} or a \texttt{function}, to \texttt{save} it
and to evaluate it at a specific point in the space (\texttt{feval}).
As Octave is a dynamically typed language it could be a difficult task to achieve, but hopefully
the Octave interpreter takes care of it and it is enough to put the polymorphic function
in a folder named as the type. For example, in the \texttt{@function} folder
inside the Fem-fenics directory we can find the \texttt{plot, save, feval} functions.
\iffalse
\paragraph{other function}
SubSpace allows to extract a subspace from a vectorial one.
For example, if our space is P2 x P0 we can extract the one or
the other and then apply BC only where it is necessary.
\verb$fem_eval$ takes as input a Function and a coordinate and returns a
vector representing the value of the function at this point.
for dealing with form of rank 0, i.e. with functional, we have now
added the functions \verb$fem_create_functional$ to create it from a .ufl file.
We have thus extended the function assemble which returns the corresponding double value.
\verb$plot_2d$ and \verb$plot_3d$: these functions allow us to plot a function specifying
a mesh and the value of the function at every node of the mesh.
This is something which could be useful also outside of fem-fenics.
\section{Implementation Details}
The relevant implementation details which the user should know are:
We have split the construction of the form into two steps:
We set all the coefficients of the form using the function which we create on the fly.
They will be named \verb$ProblemName_BilinearForm$ or \verb$ProblemName_LinearForm$.
Then we apply specific BC to the form using the assemble() function and we get back the matrix.
If we are assembling the whole system and we want to keep the symmetry of the matrix (if any),
we can instead use the command \verb$assemble_system$ (). Finally, if we are solving a non-linear problem
and we need to apply essential BC, we should provide to the function also the vector with the
tentative solution in order to modify the entries corresponding to the boundary values.
This will be illustrated below in the HyperElasticity example.
\fi
\chapter{More Advanced Examples}\label{exem}
In this chapter more examples are provided.
At the beginning of each section, the problem is briefly presented and then
the Octave script for the resolution of the problem using Fem-fenics is presented alongside the code
written in C++ or in Python.
For each problem, we refer the reader to the complete desciption on the FEniCS website.
\iffalse
In the following examples we can see directly in action the classes and the functions presented in the
chapters before. A comparison with DOLFIN is given only for the first example, while more extensive case can
be found online. We do not report the code for all the examples but only the relevant parts.
With the following examples, we can see directly in action the new features and understand how they work.
Navier-Stokes: we learn how to deal with a vector-field problem and how we can save the solution using the
\verb$fem_save$ () function. We also use the fem pkg to generate a mesh using gmesh.
Mixed-Poisson: we solve the Poisson problem presented in the previous posts using a mixed formulation,
and we see how we can extract a scalar field from a vector one.
HyperElasticity: we exploit the fsolve () command to solve a non-linear problem. In particular,
we see how to use the assemble() function to apply BC also in this situation.
Advection-Diffusion: we solve a time dependent problem using the lsode () command and save
the solution using the pkg flp.
or bim web-page,
while here we highlight only the implementation detail relevant for our pkg.
\fi
\section{Mixed Formulation for the Poisson Equation}
In this example the Poisson equation is solved with a
''mixed approach'': it is used the stable FE space obtained using Brezzi-Douglas-Marini
polynomial of order 1 and Dicontinuos element of order 0.
\begin{align*}
-\mathrm{div}\ ( \mathbf{\sigma} (x, y) ) ) &= f (x, y) & \quad \mbox{ in } \Omega \\
\sigma (x, y) &= \nabla u (x, y) & \quad \mbox{ in } \Omega \\
u(x, y) &= 0 & \quad \mbox{ on } \Gamma_D \\
(\sigma (x, y) ) \cdot \mathbf{n} &= \sin (5x) & \quad \mbox{ on } \Gamma_N
\end{align*}
A complete description of the problem is avilable on the Fenics website \cite{mixedpois}.
\begin{changemargin}{-1.5cm}{-1.5cm}
$\phantom {u}$
\begin{parcolumns}[colwidths={1=0.65\textwidth,2=0.65\textwidth}]{2}
\colchunk{\begin{lstlisting}[caption=Fem-fenics, language=Octave, numbers=none]{Name}
pkg load fem-fenics msh
import_ufl_Problem ('MixedPoisson')
# Create mesh
x = y = linspace (0, 1, 33);
mesh = Mesh(msh2m_structured_mesh (x, y, 1, 1:4));
# File MixedPoisson.ufl
# BDM = FiniteElement("BDM", triangle, 1)
# DG = FiniteElement("DG", triangle, 0)
# W = BDM * DG
V = FunctionSpace('MixedPoisson', mesh);
# Define trial and test function
# File MixedPoisson.ufl
# (sigma, u) = TrialFunctions(W)
# (tau, v) = TestFunctions(W)
# CG = FiniteElement("CG", triangle, 1)
# f = Coefficient(CG)
f = Expression ('f',
@(x,y) 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02));
# Define variational form
# File MixedPoisson.ufl
# a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx
# L = - f*v*dx
a = BilinearForm ('MixedPoisson', V, V);
L = LinearForm ('MixedPoisson', V, f);
# Define essential boundary
bc1 = DirichletBC (SubSpace (V, 1), @(x,y) [0; -sin(5.0*x)], 1);
bc2 = DirichletBC (SubSpace (V, 1), @(x,y) [0; sin(5.0*x)], 3);
# Compute solution
[A, b] = assemble_system (a, L, bc1, bc2);
sol = A \ b;
func = Function ('func', V, sol);
sigma = Function ('sigma', func, 1);
u = Function ('u', func, 2);
# Plot solution
plot (sigma);
plot (u);
#
\end{lstlisting}}
\colchunk{\begin{lstlisting}[caption=Python, language=Python, numbers=none]{Name}
from dolfin import *
# Create mesh
mesh = UnitSquareMesh(32, 32)
# Define function spaces and mixed (product) space
BDM = FunctionSpace(mesh, "BDM", 1)
DG = FunctionSpace(mesh, "DG", 0)
W = BDM * DG
# Define trial and test functions
(sigma, u) = TrialFunctions(W)
(tau, v) = TestFunctions(W)
f = Expression
("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")
# Define variational form
a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx
L = - f*v*dx
# Define function G such that G \cdot n = g
class BoundarySource(Expression):
def __init__(self, mesh):
self.mesh = mesh
def eval_cell(self, values, x, ufc_cell):
cell = Cell(self.mesh, ufc_cell.index)
n = cell.normal(ufc_cell.local_facet)
g = sin(5*x[0])
values[0] = g*n[0]
values[1] = g*n[1]
def value_shape(self):
return (2,)
G = BoundarySource(mesh)
# Define essential boundary
def boundary(x):
return x[1] < DOLFIN_EPS or x[1] > 1.0 - DOLFIN_EPS
bc = DirichletBC(W.sub(0), G, boundary)
# Compute solution
w = Function(W)
solve(a == L, w, bc)
(sigma, u) = w.split()
# Plot sigma and u
plot(sigma)
plot(u)
interactive()
# Copyright 2011, The FEniCS Project
\end{lstlisting}}
\colplacechunks
\end{parcolumns}
\end{changemargin}
\section{Incompressible Navier-Stokes equation}
In this example the incompressible Navier-Stokes equation
\begin{align*}
\dfrac{\partial u}{\partial t} + (\mathbf u \cdot \mathrm{\nabla}) \mathbf u - \nu \Delta \mathbf u
+ \nabla p &= f & \quad \mbox{ in } \Omega \\
\mathrm{\nabla} \cdot \mathbf u &= 0 & \quad \mbox{ in } \Omega \\
\end{align*}
are solved using the Chorin-Temam algorithm. The L-shaped domain $\Omega$ can be obtained using
the msh pkg.
\begin{lstlisting}[language=Octave]
name = [tmpnam ".geo"];
fid = fopen (name, "w");
fputs (fid,"Point (1) = {0, 0, 0, 0.1};\n");
fputs (fid,"Point (2) = {1, 0, 0, 0.1};\n");
fputs (fid,"Point (3) = {1, 0.5, 0, 0.1};\n");
fputs (fid,"Point (4) = {0.5, 0.5, 0, 0.1};\n");
fputs (fid,"Point (5) = {0.5, 1, 0, 0.1};\n");
fputs (fid,"Point (6) = {0, 1, 0,0.1};\n");
fputs (fid,"Line (1) = {5, 6};\n");
fputs (fid,"Line (2) = {2, 3};\n");
fputs (fid,"Line(3) = {6,1,2};\n");
fputs (fid,"Line(4) = {5,4,3};\n");
fputs (fid,"Line Loop(7) = {3,2,-4,1};\n");
fputs (fid,"Plane Surface(8) = {7};\n");
fclose (fid);
msho = msh2m_gmsh (canonicalize_file_name (name)(1:end-4),...
"scale", 1,"clscale", .2);
unlink (canonicalize_file_name (name));
\end{lstlisting}
The flow is driven by an oscillating pressure $p_{in}(t) = \sin 3t$ at the inflow
while the pressure is kept constant $p_{out} = 0$ at the outflow.
A complete description of the problem is avilable on the Fenics website \cite{navierstokes}.
\begin{changemargin}{-1.5cm}{-1.5cm}
$\phantom {u}$
\begin{parcolumns}[colwidths={1=0.65\textwidth,2=0.65\textwidth}]{2}
\colchunk{\begin{lstlisting}[caption=Fem-fenics, language=Octave, numbers=none]{Name}
pkg load fem-fenics msh
import_ufl_Problem ("TentativeVelocity");
import_ufl_Problem ("VelocityUpdate");
import_ufl_Problem ("PressureUpdate");
# We can either load the mesh from the file as in Dolfin but
# we can also use the msh pkg to generate the L-shape domain
# as showed above
mesh = Mesh ('lshape.xml');
# Define function spaces (P2-P1). UFL file
# V = VectorElement("CG", triangle, 2)
# Q = FiniteElement("CG", triangle, 1)
V = FunctionSpace ('VelocityUpdate', mesh);
Q = FunctionSpace ('PressureUpdate', mesh);
# Define trial and test functions. From ufl file
# u = TrialFunction(V)
# p = TrialFunction(Q)
# v = TestFunction(V)
# q = TestFunction(Q)
# Set parameter values. From ufl file
# nu = 0.01
dt = 0.01;
T = 3.;
# Define boundary conditions
noslip = DirichletBC (V, @(x,y) [0; 0], [3, 4]);
outflow = DirichletBC (Q, @(x,y) 0, 2);
# Create functions
u0 = Expression ('u0', @(x,y) [0; 0]);
# Define coefficients
k = Constant ('k', dt);
f = Constant ('f', [0; 0]);
# Tentative velocity step. From ufl file
# eq = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx \
# + nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx
a1 = BilinearForm ('TentativeVelocity', V, V, k);
# Pressure update. From ufl file
# a = inner(grad(p), grad(q))*dx
# L = -(1/k)*div(u1)*q*dx
a2 = BilinearForm ('PressureUpdate', Q, Q);
# Velocity update
# a = inner(u, v)*dx
# L = inner(u1, v)*dx - k*inner(grad(p1), v)*dx
a3 = BilinearForm ('VelocityUpdate', V, V);
# Assemble matrices
A1 = assemble (a1, noslip);
A3 = assemble (a3, noslip);
# Time-stepping
t = dt; i = 0;
while t < T
# Update pressure boundary condition
inflow = DirichletBC (Q, @(x,y) sin(3.0*t), 1);
# Compute tentative velocity step
"Computing tentative velocity"
L1 = LinearForm ('TentativeVelocity', V, k, u0, f);
b1 = assemble (L1, noslip);
utmp = A1 \ b1;
u1 = Function ('u1', V, utmp);
# Pressure correction
"Computing pressure correction"
L2 = LinearForm ('PressureUpdate', Q, u1, k);
[A2, b2] = assemble_system (a2, L2, inflow, outflow);
ptmp = A2 \ b2;
p1 = Function ('p1', Q, ptmp);
# Velocity correction
"Computing velocity correction"
L3 = LinearForm ('VelocityUpdate', V, k, u1, p1);
b3 = assemble (L3, noslip);
ut = A3 \ b3;
u1 = Function ('u0', V, ut);
# Plot solution
plot (p1);
plot (u1);
# Save to file
save (p1, sprintf ("p_%3.3d", ++i));
save (u1, sprintf ("u_%3.3d", i));
# Move to next time step
u0 = u1;
t += dt
end
#
\end{lstlisting}}
\colchunk{\begin{lstlisting}[caption=Python, language=Python, numbers=none]{Name}
from dolfin import *
# Load mesh from file
mesh = Mesh("lshape.xml")
# Define function spaces (P2-P1)
V = VectorFunctionSpace(mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)
# Define trial and test functions
u = TrialFunction(V)
p = TrialFunction(Q)
v = TestFunction(V)
q = TestFunction(Q)
# Set parameter values
nu = 0.01
dt = 0.01
T = 3
# Define time-dependent pressure BC
p_in = Expression("sin(3.0*t)", t=0.0)
# Define boundary conditions
noslip = DirichletBC(V, (0, 0),
"on_boundary && \
(x[0] < DOLFIN_EPS | x[1] < DOLFIN_EPS | \
(x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))")
inflow = DirichletBC(Q, p_in, "x[1] > 1.0 - DOLFIN_EPS")
outflow = DirichletBC(Q, 0, "x[0] > 1.0 - DOLFIN_EPS")
bcu = [noslip]
bcp = [inflow, outflow]
# Create functions
u0 = Function(V)
u1 = Function(V)
p1 = Function(Q)
# Define coefficients
k = Constant(dt)
f = Constant((0, 0))
# Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx \
+ nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)
# Pressure update
a2 = inner(grad(p), grad(q))*dx
L2 = -(1/k)*div(u1)*q*dx
# Velocity update
a3 = inner(u, v)*dx
L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx
# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)
# Use amg preconditioner if available
prec = "amg" if has_krylov_solver_preconditioner("amg")
else "default"
# Create files for storing solution
ufile = File("results/velocity.pvd")
pfile = File("results/pressure.pvd")
# Time-stepping
t = dt
while t < T + DOLFIN_EPS:
# Update pressure boundary condition
p_in.t = t
# Compute tentative velocity step
begin("Computing tentative velocity")
b1 = assemble(L1)
[bc.apply(A1, b1) for bc in bcu]
solve(A1, u1.vector(), b1, "gmres", "default")
end()
# Pressure correction
begin("Computing pressure correction")
b2 = assemble(L2)
[bc.apply(A2, b2) for bc in bcp]
solve(A2, p1.vector(), b2, "gmres", prec)
end()
# Velocity correction
begin("Computing velocity correction")
b3 = assemble(L3)
[bc.apply(A3, b3) for bc in bcu]
solve(A3, u1.vector(), b3, "gmres", "default")
end()
# Plot solution
plot(p1, title="Pressure", rescale=True)
plot(u1, title="Velocity", rescale=True)
# Save to file
ufile << u1
pfile << p1
# Move to next time step
u0.assign(u1)
t += dt
print "t =", t
# Hold plot
interactive()
# Copyright 2011, The FEniCS Project
\end{lstlisting}}
\colplacechunks
\end{parcolumns}
\end{changemargin}
\section{HyperElasticity}
This time we compare the code with the C++ version of DOLFIN.
The problem for an elastic material can be expressed as a minimization problem
\begin{align*}
\min_{u \in V} \Pi\\
\Pi &= \int_{\Omega} \psi(u) \, {\rm d} x - \int_{\Omega} B \cdot u \, {\rm d} x - \int_{\partial\Omega} T \cdot u \,
{\rm d} s\\
\end{align*}
where $\Pi$ is the total potential energy, $\psi$ is the elastic stored energy, $B$ is a body force and $T$
is a traction force.
A complete description of the problem is avilable on the Fenics website \cite{hyperelasticity}.
The final solution will look like figure \ref{Hyp}.
\begin{figure}
\begin{center}
\includegraphics[height=6 cm,keepaspectratio=true]{./HyperElasticity.png}
\caption{Solution of the HyperElasticity problem}
\label{Hyp}
\end{center}
\end{figure}
\begin{lstlisting}[caption=UFL code, language=Python, numbers=none]
# Function spaces
element = VectorElement("Lagrange", tetrahedron, 1)
# Trial and test functions
du = TrialFunction(element) # Incremental displacement
v = TestFunction(element) # Test function
# Functions
u = Coefficient(element) # Displacement from previous iteration
B = Coefficient(element) # Body force per unit volume
T = Coefficient(element) # Traction force on the boundary
# Kinematics
I = Identity(element.cell().d) # Identity tensor
F = I + grad(u) # Deformation gradient
C = F.T*F # Right Cauchy-Green tensor
# Invariants of deformation tensors
Ic = tr(C)
J = det(F)
# Elasticity parameters
mu = Constant(tetrahedron)
lmbda = Constant(tetrahedron)
# Stored strain energy density (compressible neo-Hookean model)
psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2
# Total potential energy
Pi = psi*dx - inner(B, u)*dx - inner(T, u)*ds
# First variation of Pi (directional derivative about u in the direction of v)
F = derivative(Pi, u, v)
# Compute Jacobian of F
J = derivative(F, u, du)
# Copyright 2011, The FEniCS Project
\end{lstlisting}
\begin{changemargin}{-1.5cm}{-1.5cm}
$\phantom {u}$
\begin{parcolumns}[colwidths={1=0.65\textwidth,2=0.65\textwidth}]{2}
\colchunk{\begin{lstlisting}[caption=Fem-fenics, language=Octave, numbers=none]{Name}
pkg load fem-fenics msh
problem = 'HyperElasticity';
import_ufl_Problem (problem);
Rotation = @(x,y,z) ...
[0; ...
0.5*(0.5 + (y - 0.5)*cos(pi/3) - (z-0.5)*sin(pi/3) - y);...
0.5*(0.5 + (y - 0.5)*sin(pi/3) + (z-0.5)*cos(pi/3) - z)];
# Create mesh and define function space
x = y = z = linspace (0, 1, 17);
mshd = Mesh (msh3m_structured_mesh (x, y, z, 1, 1:6));
V = FunctionSpace (problem, mshd);
# Create Dirichlet boundary conditions
bcl = DirichletBC (V, @(x,y,z) [0; 0; 0], 1);
bcr = DirichletBC (V, Rotation, 2);
bcs = {bcl, bcr};
# Define source and boundary traction functions
B = Constant ('B', [0.0; -0.5; 0.0]);
T = Constant ('T', [0.1; 0.0; 0.0]);
# Set material parameters
E = 10.0;
nu = 0.3;
mu = Constant ('mu', E./(2*(1+nu)));
lmbda = Constant ('lmbda', E*nu./((1+nu)*(1-2*nu)));
u = Expression ('u', @(x,y,z) [0; 0; 0]);
# Create (linear) form defining (nonlinear) variational problem
L = ResidualForm (problem, V, mu, lmbda, B, T, u);
# Solve nonlinear variational problem F(u; v) = 0
u0 = assemble (L, bcs{:});
# Create function for the resolution of the NL problem
function [y, jac] = f (problem, xx, V, bc1, bc2, B, T, mu, lmbda)
u = Function ('u', V, xx);
a = JacobianForm (problem, V, mu, lmbda, u);
L = ResidualForm (problem, V, mu, lmbda, B, T, u);
if (nargout == 1)
[y, xx] = assemble (L, xx, bc1, bc2);
elseif (nargout == 2)
[jac, y, xx] = assemble_system (a, L, xx, bc1, bc2);
endif
endfunction
fs = @(xx) f (problem, xx, V, bcl, bcr, B, T, mu, lmbda);
[x, fval, info] = fsolve (fs, u0, optimset ("jacobian", "on"));
func = Function ('u', V, x);
# Save solution in VTK format
save (func, 'displacement');
# Plot solution
plot (func);
#
\end{lstlisting}}
\colchunk{\begin{lstlisting}[caption=C++, language=C++, numbers=none]{Name}
#include <dolfin.h>
#include "HyperElasticity.h"
using namespace dolfin;
// Sub domain for clamp at left end
class Left : public SubDomain
{
bool inside(const Array<double>& x, bool on_boundary) const
{
return (std::abs(x[0]) < DOLFIN_EPS) && on_boundary;
}
};
// Sub domain for rotation at right end
class Right : public SubDomain
{
bool inside(const Array<double>& x, bool on_boundary) const
{
return (std::abs(x[0] - 1.0) < DOLFIN_EPS) && on_boundary;
}
};
// Dirichlet boundary condition for clamp at left end
class Clamp : public Expression
{
public:
Clamp() : Expression(3) {}
void eval(Array<double>& values, const Array<double>& x) const
{
values[0] = 0.0;
values[1] = 0.0;
values[2] = 0.0;
}
};
// Dirichlet boundary condition for rotation at right end
class Rotation : public Expression
{
public:
Rotation() : Expression(3) {}
void eval(Array<double>& values, const Array<double>& x) const
{
const double scale = 0.5;
// Center of rotation
const double y0 = 0.5;
const double z0 = 0.5;
// Large angle of rotation (60 degrees)
double theta = 1.04719755;
// New coordinates
double y = y0 + (x[1]-y0)*cos(theta) - (x[2]-z0)*sin(theta);
double z = z0 + (x[1]-y0)*sin(theta) + (x[2]-z0)*cos(theta);
// Rotate at right end
values[0] = 0.0;
values[1] = scale*(y - x[1]);
values[2] = scale*(z - x[2]);
}
};
int main()
{
// Create mesh and define function space
UnitCubeMesh mesh (16, 16, 16);
HyperElasticity::FunctionSpace V(mesh);
// Define Dirichlet boundaries
Left left;
Right right;
// Define Dirichlet boundary functions
Clamp c;
Rotation r;
// Create Dirichlet boundary conditions
DirichletBC bcl(V, c, left);
DirichletBC bcr(V, r, right);
std::vector<const BoundaryCondition*> bcs;
bcs.push_back(&bcl); bcs.push_back(&bcr);
// Define source and boundary traction functions
Constant B(0.0, -0.5, 0.0);
Constant T(0.1, 0.0, 0.0);
// Define solution function
Function u(V);
// Set material parameters
const double E = 10.0;
const double nu = 0.3;
Constant mu(E/(2*(1 + nu)));
Constant lambda(E*nu/((1 + nu)*(1 - 2*nu)));
// Create (linear) form defining (nonlinear) variational problem
HyperElasticity::ResidualForm F(V);
F.mu = mu; F.lmbda = lambda; F.B = B; F.T = T; F.u = u;
// Create jacobian dF = F' (for use in nonlinear solver).
HyperElasticity::JacobianForm J(V, V);
J.mu = mu; J.lmbda = lambda; J.u = u;
// Solve nonlinear variational problem F(u; v) = 0
solve(F == 0, u, bcs, J);
// Save solution in VTK format
File file("displacement.pvd");
file << u;
// Plot solution
plot(u);
interactive();
return 0;
}
# Copyright 2011, The FEniCS Project
\end{lstlisting}}
\colplacechunks
\end{parcolumns}
\end{changemargin}
\iffalse
\section{Fictitious Domain}
A penalization method to take into account obstacles in incompressible viscous flows
\fi
\newpage
\backmatter
\appendix
\chapter{API reference}\label{app}
\section{Import problem defined with ufl}
\subsection*{import\_ufl\_BilinearForm}
\subimport{latex/}{API/import_ufl_BilinearForm.tex}
\subsection*{import\_ufl\_LinearForm}
\subimport{latex/}{API/import_ufl_LinearForm.tex}
\subsection*{ import\_ufl\_Functional}
\subimport{latex/}{API/import_ufl_Functional.tex}
\subsection*{ import\_ufl\_FunctionSpace}
\subimport{latex/}{API/import_ufl_FunctionSpace.tex}
\subsection*{ import\_ufl\_Problem}
\subimport{latex/}{API/import_ufl_Problem.tex}
\section{Problem geometry and FE space}
\subsection*{ Mesh}
\subimport{latex/}{API/Mesh.tex}
\subsection*{ FunctionSpace}
\subimport{latex/}{API/FunctionSpace.tex}
\subsection*{ SubSpace}
\subimport{latex/}{API/SubSpace.tex}
\section{Problem variables}
\subsection*{ Constant}
\subimport{latex/}{API/Constant.tex}
\subsection*{ Expression}
\subimport{latex/}{API/Expression.tex}
\subsection*{ Function}
\subimport{latex/}{API/Function.tex}
\subsection*{ DirichletBC}
\subimport{latex/}{API/DirichletBC.tex}
\section{Definition of the abstract Variational problem}
\subsection*{ BilinearForm}
\subimport{latex/}{API/BilinearForm.tex}
\subsection*{ LinearForm}
\subimport{latex/}{API/LinearForm.tex}
\subsection*{ ResidualForm}
\subimport{latex/}{API/ResidualForm.tex}
\subsection*{ JacobianForm}
\subimport{latex/}{API/JacobianForm.tex}
\subsection*{ Functional}
\subimport{latex/}{API/Functional.tex}
\section{Creation of the discretized problem}
\subsection*{ assemble}
\subimport{latex/}{API/assemble.tex}
\subsection*{ assemble\_system}
\subimport{latex/}{API/assemble_system.tex}
\section{Post processing}
\subsection*{ @function/save}
\subimport{latex/}{API/save.tex}
\subsection*{ @function/plot}
\subimport{latex/}{API/plot.tex}
\subsection*{ @mesh/plot}
\subimport{latex/}{API/plot_m.tex}
\subsection*{ @function/feval}
\subimport{latex/}{API/feval.tex}
\chapter{Autoconf and Automake}
In this section we want to discuss how we can write a config.ac and a Makefile.in files which:
\begin{itemize}
\item check if a program is available and stop if it is not
\item check if a header file is available and issue a warning if not, but go ahead with the compilation
\end{itemize}
To reach this goal, we need two components:
\paragraph{configure.ac} Is a file which checks whether the program/header is available or not
and sets consequently the values of some variables.
\begin{lstlisting}[language=make]
# Checks if the program mkoctfile is available and sets the variable HAVE_MKOCTFILE consequently
AC_CHECK_PROG([HAVE_MKOCTFILE], [mkoctfile], [yes], [no])
# if mkoctfile is not available, it issues an error and stops the compilation
if [test $HAVE_MKOCTFILE = "no"]; then
AC_MSG_ERROR([mkoctfile required to install $PACKAGE_NAME])
fi
#Checks if the header dolfin.h is available; if it is available, the value of the ac_dolfin_cpp_flags is substituted with -DHAVE_DOLFIN_H, otherwise it is left empty and a warning message is printed
AC_CHECK_HEADER([dolfin.h],
[AC_SUBST(ac_dolfin_cpp_flags,-DHAVE_DOLFIN_H) AC_SUBST(ac_dolfin_ld_flags,-ldolfin)],
[AC_MSG_WARN([dolfin headers could not be found, some functionalities will be disabled, don't worry your package will still be working, though.])] ).
# It generates the Makefile, using the template described below
AC_CONFIG_FILES([Makefile])
\end{lstlisting}
\paragraph{Makefile.ac} This file is a template for the Makefile, which will be automatically generated when the configure.ac
file is executed. The values of the variable \verb$ac_dolfin_cpp_flags$ and \verb$ac_dolfin_ld_flags$ are substituted with the
results obtained above:
\begin{lstlisting}[language=make]
CPPFLAGS += @ac_dolfin_cpp_flags@
LDFLAGS += @ac_dolfin_ld_flags@
\end{lstlisting}
In this way, if dolfin.h is available, CPPFLAGS contains also the flag -DHAVE\_DOLFIN\_H.
\paragraph {program.cc} Our .cc program, should thus include the header dolfin.h only if
\verb$-DHAVE_DOLFIN_H$ is defined at compilation time.
For example
\begin{lstlisting}
#ifdef HAVE_DOLFIN_H
#include <dolfin.h>
#endif
int main ()
{
#ifndef HAVE_DOLFIN_H
error("program: the program was built without support for dolfin");
#else
/* Body of your function */
#endif
return 0;
}
\end{lstlisting}
\iffalse
\paragraph {Warning} If in the Makefile.in you write something like
\begin{lstlisting}[language=make]
HAVE_DOLFIN_H = @HAVE_DOLFIN_H@
ifdef HAVE_DOLFIN_H
CPPFLAGS += -DHAVE_DOLFIN_H
LIBS += -ldolfin
endif
\end{lstlisting}
it doesn't work because the variable \verb$HAVE_DOLFIN_H$ seems to be always defined, even if the header is not available.
\fi
\bibliographystyle{unsrt}
\bibliography{doc}
\end{document}