[508d22]: inst / nls_example.m Maximize Restore History

Download this file

nls_example.m    58 lines (49 with data), 1.9 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
## Copyright (C) 2006 Michael Creel <michael.creel@uab.es>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.
## Example to show how to use NLS
# Generate data
n = 100; # how many observations?
# the explanatory variables: note that they have unequal scales
x = [ones(n,1) rand(n,2)];
theta = 1:3; # true coefficients are 1,2,3
theta = theta';
lambda = exp(x*theta);
y = randp(lambda); # generate the dependent variable
# example objective function for nls
function [obj_contrib, score] = nls_example_obj(theta, data, otherargs)
y = data(:,1);
x = data(:,2:columns(data));
lambda = exp(x*theta);
errors = y - lambda;
obj_contrib = errors .* errors;
score = "na";
endfunction
#####################################
# define arguments for nls_estimate #
#####################################
# starting values
theta = zeros(3,1);
# data
data = [y, x];
# name of model to estimate
model = "nls_example_obj";
modelargs = {}; # none required for this obj fn.
# controls for bfgsmin - limit to 50 iters, and print final results
control = {50,1};
####################################
# do the estimation #
####################################
printf("\nNLS estimation example\n");
[theta, obj_value, convergence] = nls_estimate(theta, data, model, modelargs, control);