[1bdef1]: src / sl_sb10ad.cc Maximize Restore History

Download this file

sl_sb10ad.cc    243 lines (210 with data), 8.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*
Copyright (C) 2014 Thomas Vasileiou
This file is part of LTI Syncope.
LTI Syncope is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
LTI Syncope is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
H-infinity optimal controller using modified Glover's and Doyle's
formulas (continuous-time).
Uses SLICOT SB10AD by courtesy of NICONET e.V.
<http://www.slicot.org>
Author: Thomas Vasileiou <thomas-v@wildmail.com>
Created: January 2014
Version: 0.1
*/
#include <octave/oct.h>
#include <f77-fcn.h>
#include "common.h"
extern "C"
{
int F77_FUNC (sb10ad, SB10AD)
(int& JOB,
int& N, int& M, int& NP,
int& NCON, int& NMEAS,
double& GAMMA,
double* A, int& LDA,
double* B, int& LDB,
double* C, int& LDC,
double* D, int& LDD,
double* AK, int& LDAK,
double* BK, int& LDBK,
double* CK, int& LDCK,
double* DK, int& LDDK,
double* AC, int& LDAC,
double* BC, int& LDBC,
double* CC, int& LDCC,
double* DC, int& LDDC,
double* RCOND,
double& GTOL, double& ACTOL,
int* IWORK, int& LIWORK,
double* DWORK, int& LDWORK,
bool* BWORK, int& LBWORK,
int& INFO);
}
// PKG_ADD: autoload ("__sl_sb10ad__", "__control_slicot_functions__.oct");
DEFUN_DLD (__sl_sb10ad__, args, nargout,
"-*- texinfo -*-\n\
Slicot SB10AD Release 5.0\n\
No argument checking.\n\
For internal use only.")
{
int nargin = args.length ();
octave_value_list retval;
if (nargin != 9)
{
print_usage ();
}
else
{
// arguments in
Matrix a = args(0).matrix_value ();
Matrix b = args(1).matrix_value ();
Matrix c = args(2).matrix_value ();
Matrix d = args(3).matrix_value ();
int ncon = args(4).int_value ();
int nmeas = args(5).int_value ();
double gamma = args(6).double_value ();
double gtol = args(7).double_value ();
double actol = args(8).double_value ();
int n = a.rows (); // n: number of states
int m = b.columns (); // m: number of inputs
int np = c.rows (); // np: number of outputs
int lda = max (1, a.rows ());
int ldb = max (1, b.rows ());
int ldc = max (1, c.rows ());
int ldd = max (1, d.rows ());
int ldak = max (1, n);
int ldbk = max (1, n);
int ldck = max (1, ncon);
int lddk = max (1, ncon);
int ldac = max (1, 2*n);
int ldbc = max (1, 2*n);
int ldcc = max (1, np-nmeas);
int lddc = max (1, np-nmeas);
int job = 1;
// arguments out
Matrix ak (ldak, n);
Matrix bk (ldbk, nmeas);
Matrix ck (ldck, n);
Matrix dk (lddk, nmeas);
Matrix ac (ldac, 2*n);
Matrix bc (ldbc, m-ncon);
Matrix cc (ldcc, 2*n);
Matrix dc (lddc, m-ncon);
ColumnVector rcond (4);
// workspace
int m2 = ncon;
int m1 = m - m2;
int np2 = nmeas;
int np1 = np - np2;
int nd1 = np1 - m2;
int nd2 = m1 - np2;
int liwork = max (2*max (n, m-ncon, np-nmeas, ncon, nmeas), n*n);
int lw1 = n*m + np*n + np*m + m2*m2 + np2*np2;
int lw2 = max ((n + np1 + 1)*(n + m2) +
max (3*(n + m2) + n + np1, 5*(n + m2)),
(n + np2)*(n + m1 + 1) +
max (3*(n + np2) + n + m1, 5*(n + np2)),
m2 + np1*np1 +
max (np1*max (n, m1), 3*m2 + np1, 5*m2),
np2 + m1*m1 +
max (max (n, np1)*m1, 3*np2 + m1, 5*np2));
int lw3 = max (nd1*m1 + max (4*min (nd1, m1) + max (nd1,m1),
6*min (nd1, m1)), np1*nd2 +
max (4*min (np1, nd2) + max (np1, nd2),
6*min (np1, nd2)));
int lw4 = 2*m*m + np*np + 2*m*n + m*np + 2*n*np;
int lw5 = 2*n*n + m*n + n*np;
int lw6 = max (m*m + max (2*m1, 3*n*n +
max (n*m, 10*n*n + 12*n + 5)),
np*np + max (2*np1, 3*n*n +
max (n*np, 10*n*n + 12*n + 5)));
int lw7 = m2*np2 + np2*np2 + m2*m2 +
max (nd1*nd1 + max (2*nd1, (nd1 + nd2)*np2),
nd2*nd2 + max (2*nd2, nd2*m2), 3*n,
n*(2*np2 + m2) +
max (2*n*m2, m2*np2 +
max (m2*m2 + 3*m2, np2*(2*np2 + m2 + max (np2, n)))));
int ldwork = lw1 + max (1, lw2, lw3, lw4, lw5 + max (lw6,lw7));
int lbwork = 2*n;
OCTAVE_LOCAL_BUFFER (int, iwork, liwork);
OCTAVE_LOCAL_BUFFER (double, dwork, ldwork);
OCTAVE_LOCAL_BUFFER (bool, bwork, lbwork);
// error indicator
int info;
// SLICOT routine SB10AD
F77_XFCN (sb10ad, SB10AD,
(job,
n, m, np,
ncon, nmeas,
gamma,
a.fortran_vec (), lda,
b.fortran_vec (), ldb,
c.fortran_vec (), ldc,
d.fortran_vec (), ldd,
ak.fortran_vec (), ldak,
bk.fortran_vec (), ldbk,
ck.fortran_vec (), ldck,
dk.fortran_vec (), lddk,
ac.fortran_vec (), ldac,
bc.fortran_vec (), ldbc,
cc.fortran_vec (), ldcc,
dc.fortran_vec (), lddc,
rcond.fortran_vec (),
gtol, actol,
iwork, liwork,
dwork, ldwork,
bwork, lbwork,
info));
if (f77_exception_encountered)
error ("hinfsyn: __sl_sb10ad__: exception in SLICOT subroutine SB10AD");
static const char* err_msg[] = {
"0: successful exit",
"1: the matrix [A-j*omega*I, B2; C1, D12] had "
"not full column rank in respect to the tolerance EPS",
"2: the matrix [A-j*omega*I, B1; C2, D21] "
"had not full row rank in respect to the tolerance EPS",
"3: the matrix D12 had not full column rank in "
"respect to the tolerance SQRT(EPS)",
"4: the matrix D21 had not full row rank in respect "
"to the tolerance SQRT(EPS)",
"5: the singular value decomposition (SVD) algorithm "
"did not converge (when computing the SVD of one of the matrices "
"[A, B2; C1, D12], [A, B1; C2, D21], D12 or D21)",
"6: the controller is not admissible (too small value "
"of gamma)",
"7: the X-Riccati equation was not solved "
"successfully (the controller is not admissible or "
"there are numerical difficulties)",
"8: the Y-Riccati equation was not solved "
"successfully (the controller is not admissible or "
"there are numerical difficulties)",
"9: the determinant of Im2 + Tu*D11HAT*Ty*D22 is "
"zero [3]",
"10: there was numerical problems when estimating"
"the singular values of D1111, D1112, D1111', D1121'",
"11: the matrices Inp2 - D22*DK or Im2 - DK*D22"
"are singular to working precision",
"12: a stabilizing controller cannot be found"};
error_msg ("hinfsyn", info, 12, err_msg);
// return values
retval(0) = ak;
retval(1) = bk;
retval(2) = ck;
retval(3) = dk;
retval(4) = ac;
retval(5) = bc;
retval(6) = cc;
retval(7) = dc;
retval(8) = gamma;
retval(9) = rcond;
}
return retval;
}