--- a/inst/@galois/dftmtx.m
+++ b/inst/@galois/dftmtx.m
@@ -29,39 +29,39 @@
 ## The inverse Fourier transform is given by @code{dftmtx (1 / @var{a})}
 ## @end deftypefn
 
-function d = dftmtx(a)
+function d = dftmtx (a)
 
   if (nargin != 1)
     print_usage ();
   endif
 
-  if (!isgalois(a))
-    error("dftmtx: argument must be a galois variable");
+  if (!isgalois (a))
+    error ("dftmtx: argument must be a galois variable");
   endif
 
   m = a.m;
   prim = a.prim_poly;
   n = 2^a.m - 1;
   if (n > 255)
-    error ([ "dftmtx: argument must be in Galois Field GF(2^m), where" ...
-           " m is not greater than 8"]);
+    error (["dftmtx: argument must be in Galois Field GF(2^m), where" ...
+            " m is not greater than 8"]);
   endif
 
-  if (length(a) ~= 1)
+  if (length (a) ~= 1)
     error ("dftmtx: argument must be a scalar");
   endif
 
-  mp = minpol(a);
-  if ((mp(1) ~= 1) || !isprimitive(mp))
-    error("dftmtx: argument must be a primitive nth root of unity");
+  mp = minpol (a);
+  if ((mp(1) ~= 1) || !isprimitive (mp))
+    error ("dftmtx: argument must be a primitive nth root of unity");
   endif
 
-  step = log(a);
+  step = log (a);
   step = step.x;
-  row = exp(gf([0:n-1], m, prim));
-  d = zeros(n);
-  for i=1:n;
-    d(i,:) = row .^ mod(step*(i-1),n);
+  row = exp (gf ([0:n-1], m, prim));
+  d = zeros (n);
+  for i = 1:n;
+    d(i,:) = row .^ mod (step*(i-1), n);
   endfor
 
 endfunction