## Diff of /inst/ultimateld.m[bbbd80] .. [5b02c4] Maximize Restore

### Switch to side-by-side view

```--- a/inst/ultimateld.m
+++ b/inst/ultimateld.m
@@ -15,7 +15,7 @@

## -*- texinfo -*-
-## @deftypefn {Function File} {@var{ultimate} =} ultimateld (@var{s},@var{quotas})
+## @deftypefn {Function File} {@var{ultimate} =} ultimateld (@var{s}, @var{quotas})
## Calculate the ultimate values by the Loss Development (Chainladder) method.
##
## @var{s} is a mxn matrix that contains the run-off triangle, where m is the number of accident-years
@@ -27,42 +27,31 @@
##
## The LD method asumes that exists a development pattern on the individual factors.
## This means that the identity
-## @group
-## @example
+##
+## @verbatim
##             E[S(i,k) ]
## LDI(k) =   -------------
##            E[S(i,k-1) ]
-## @end example
-## @end group
-## holds for all k = {0,...,n-1} and for all i = {1,...,m}.
##
-## This follows to
-## @quotas
-## @example
+## @end verbatim
+## holds for all k = @{0, @dots{}, n-1@} and for all i = @{1, @dots{}, m@}.
+##
+## This follows to
+##
+## @verbatim
##                    l=n-1    1
-## @var{quotas}(k) =  II    -------
+## quotas(k) =  II    -------
##                    l=k+1  LDI(l)
-## @end example
-## @end group
-## and the ultimate value is
-## @quotas
-## @example
-## @var{ultimate}(i) = @var{s}(i,n-i-1) / @var{quotas}(n-i-1)
-## @end example
-## @end group
+## @end verbatim
+##
+## and the @var{ultimate} value is
+##
+## @verbatim
+## ULTIMATE(i) = S(i,n-i-1) / QUOTAS(n-i-1)
+## @end verbatim
##
## @end deftypefn
-
-## Author: Act. Esteban Cervetto ARG <estebancster@gmail.com>
-##
-## Maintainer: Act. Esteban Cervetto ARG <estebancster@gmail.com>
-##
-## Created: jul-2009
-##
-## Version: 1.1.0
-##
-## Keywords: actuarial reserves insurance bornhuetter ferguson chainladder

function ultimate = ultimateld (S,quotas)

```