## maxima-commits

 [Maxima-commits] CVS: maxima/share/linearalgebra linearalgebra.texi,1.4,1.5 From: Robert Dodier - 2005-12-23 06:46:17 ```Update of /cvsroot/maxima/maxima/share/linearalgebra In directory sc8-pr-cvs1.sourceforge.net:/tmp/cvs-serv415/share/linearalgebra Modified Files: linearalgebra.texi Log Message: Fixed some minor texinfo markup bugs. Index: linearalgebra.texi =================================================================== RCS file: /cvsroot/maxima/maxima/share/linearalgebra/linearalgebra.texi,v retrieving revision 1.4 retrieving revision 1.5 diff -u -d -r1.4 -r1.5 --- linearalgebra.texi 22 Dec 2005 22:31:43 -0000 1.4 +++ linearalgebra.texi 23 Dec 2005 06:46:09 -0000 1.5 @@ -141,17 +141,20 @@ @node Definitions for linearalgebra, Function and variable index, Introduction to linearalgebra, Top @section Definitions for linearalgebra -@... {Function} addmatrices (@var{fn}, @var(m1), @var(m2), dots) +@deffn {Function} addmatrices (@var{f}, @var{M_1}, ..., @var{M_n}) -Using the function @var{fn} as the addition function, return the sum of -the matrices m1, m2, ..... The function fn must accept any number of +@c REWORD -- THE RESULT IS NOT GENERALLY THE SUM OF M_1, ..., M_N +Using the function @var{f} as the addition function, return the sum of +the matrices @var{M_1}, ..., @var{M_n}. The function @var{f} must accept any number of arguments (a Maxima nary function). +Examples: + @c ===beg=== -m1 : matrix([1,2],[3,4])\$ -m2 : matrix([7,8],[9,10])\$ -addmatrices('max,m1,m2); -addmatrices('max,m1,m2,5*m1); +@c m1 : matrix([1,2],[3,4])\$ +@c m2 : matrix([7,8],[9,10])\$ +@c addmatrices('max,m1,m2); +@c addmatrices('max,m1,m2,5*m1); @c ===end=== @example (%i1) m1 : matrix([1,2],[3,4])\$ @@ -162,11 +165,15 @@ (%o4) matrix([7,10],[15,20]) @end example +@end deffn + @deffn {Function} blockmatrixp (@var{M}) Return true if and only if @var{M} is a matrix and every entry of @var{M} is a matrix. +@end deffn + @deffn {Function} columnop (@var{M}, @var{i}, @var{j}, @var{theta}) If @var{M} is a matrix, return the matrix that results from doing the ```