You can subscribe to this list here.
2001 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}
(20) 
_{Dec}
(17) 

2002 
_{Jan}
(39) 
_{Feb}
(21) 
_{Mar}
(33) 
_{Apr}
(135) 
_{May}
(53) 
_{Jun}
(88) 
_{Jul}
(47) 
_{Aug}
(59) 
_{Sep}
(207) 
_{Oct}
(40) 
_{Nov}
(7) 
_{Dec}
(26) 
2003 
_{Jan}
(49) 
_{Feb}
(39) 
_{Mar}
(117) 
_{Apr}
(50) 
_{May}
(62) 
_{Jun}
(6) 
_{Jul}
(19) 
_{Aug}
(24) 
_{Sep}
(11) 
_{Oct}
(11) 
_{Nov}
(49) 
_{Dec}
(9) 
2004 
_{Jan}
(29) 
_{Feb}
(123) 
_{Mar}
(32) 
_{Apr}
(53) 
_{May}
(52) 
_{Jun}
(19) 
_{Jul}
(33) 
_{Aug}
(10) 
_{Sep}
(76) 
_{Oct}
(86) 
_{Nov}
(171) 
_{Dec}
(163) 
2005 
_{Jan}
(147) 
_{Feb}
(121) 
_{Mar}
(120) 
_{Apr}
(126) 
_{May}
(120) 
_{Jun}
(213) 
_{Jul}
(76) 
_{Aug}
(79) 
_{Sep}
(140) 
_{Oct}
(83) 
_{Nov}
(156) 
_{Dec}
(202) 
2006 
_{Jan}
(181) 
_{Feb}
(171) 
_{Mar}
(157) 
_{Apr}
(98) 
_{May}
(96) 
_{Jun}
(97) 
_{Jul}
(193) 
_{Aug}
(76) 
_{Sep}
(130) 
_{Oct}
(63) 
_{Nov}
(196) 
_{Dec}
(253) 
2007 
_{Jan}
(256) 
_{Feb}
(293) 
_{Mar}
(276) 
_{Apr}
(258) 
_{May}
(181) 
_{Jun}
(91) 
_{Jul}
(108) 
_{Aug}
(69) 
_{Sep}
(107) 
_{Oct}
(179) 
_{Nov}
(137) 
_{Dec}
(121) 
2008 
_{Jan}
(124) 
_{Feb}
(129) 
_{Mar}
(192) 
_{Apr}
(201) 
_{May}
(90) 
_{Jun}
(86) 
_{Jul}
(115) 
_{Aug}
(142) 
_{Sep}
(49) 
_{Oct}
(91) 
_{Nov}
(95) 
_{Dec}
(218) 
2009 
_{Jan}
(230) 
_{Feb}
(149) 
_{Mar}
(118) 
_{Apr}
(72) 
_{May}
(77) 
_{Jun}
(68) 
_{Jul}
(102) 
_{Aug}
(72) 
_{Sep}
(89) 
_{Oct}
(76) 
_{Nov}
(125) 
_{Dec}
(86) 
2010 
_{Jan}
(75) 
_{Feb}
(90) 
_{Mar}
(89) 
_{Apr}
(121) 
_{May}
(111) 
_{Jun}
(66) 
_{Jul}
(75) 
_{Aug}
(66) 
_{Sep}
(66) 
_{Oct}
(166) 
_{Nov}
(121) 
_{Dec}
(73) 
2011 
_{Jan}
(74) 
_{Feb}

_{Mar}

_{Apr}
(14) 
_{May}
(22) 
_{Jun}
(31) 
_{Jul}
(53) 
_{Aug}
(37) 
_{Sep}
(23) 
_{Oct}
(25) 
_{Nov}
(31) 
_{Dec}
(28) 
2012 
_{Jan}
(18) 
_{Feb}
(11) 
_{Mar}
(32) 
_{Apr}
(17) 
_{May}
(48) 
_{Jun}
(37) 
_{Jul}
(23) 
_{Aug}
(54) 
_{Sep}
(15) 
_{Oct}
(11) 
_{Nov}
(19) 
_{Dec}
(22) 
2013 
_{Jan}
(11) 
_{Feb}
(32) 
_{Mar}
(24) 
_{Apr}
(37) 
_{May}
(31) 
_{Jun}
(14) 
_{Jul}
(26) 
_{Aug}
(33) 
_{Sep}
(40) 
_{Oct}
(21) 
_{Nov}
(36) 
_{Dec}
(84) 
2014 
_{Jan}
(23) 
_{Feb}
(20) 
_{Mar}
(27) 
_{Apr}
(24) 
_{May}
(31) 
_{Jun}
(27) 
_{Jul}
(34) 
_{Aug}
(25) 
_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 


1
(2) 
2
(1) 
3

4
(3) 
5
(1) 
6
(1) 
7
(2) 
8

9
(4) 
10
(4) 
11

12

13
(8) 
14
(2) 
15

16

17
(2) 
18

19

20

21

22

23

24

25

26

27
(2) 
28
(7) 
29
(7) 
30
(3) 




From: Barton Willis <willisbl@us...>  20080901 21:23:38

Update of /cvsroot/maxima/maxima/share/contrib/altsimp In directory sc8prcvs16.sourceforge.net:/tmp/cvsserv1791 Modified Files: altsimp.lisp Log Message: expand source code comment Index: altsimp.lisp =================================================================== RCS file: /cvsroot/maxima/maxima/share/contrib/altsimp/altsimp.lisp,v retrieving revision 1.2 retrieving revision 1.3 diff u d r1.2 r1.3  altsimp.lisp 31 Aug 2008 21:26:38 0000 1.2 +++ altsimp.lisp 1 Sep 2008 21:23:30 0000 1.3 @@ 1,13 +1,39 @@ ;; Authors: Barton Willis with help from Richard Fateman +;; Author: Barton Willis with help from Richard Fateman ;; To simplify a sum with n terms, the standard simplus function calls great O(n^2) times. By ;; using sorting more effectively, this code reduced the calls to great to O(n log_2(n)). Also, ;; this code tries to be infinity correct: thus inf + inf > inf,inf + 1 > inf, and inf + minf > und. ;; Since 1 * inf doesn't simplify to minf, this code doesn't simplify inf  inf to und. Maybe the ;; special case dispatch part of this code makes the task of extending simplus (to intervals, for example) ;; easier. The basic design of this code is due to Barton Willis. +# +To simplify a sum with n terms, the standard simplus function calls +great O(n^2) times. By using sorting more effectively, this code +reduces the calls to great to O(n log_2(n)). + +Also, this code tries to be "infinity correct" for addition. By this I +mean inf + inf > inf, inf + number > inf, and inf + minf > und. +Since 1 * inf doesn't simplify to minf, this code doesn't simplify +inf  inf to und; consequently, this portion of the code is largely +untested. There are other problems too. For one, this code does +f(inf)  f(inf) > 0 (comment from Stavros Macrakis). I don't know +how far we can go with such things without making a mess. You could +argue that Maxima should do + + f(x)  f(x) > if finitep(f(x)) then 0 else und + +instead of f(x)  f(x) > 0. + +There is a great deal more that could be done. We could tag each +infinity with a unique identifier (idea from RJF). That way we could +have x : inf, x  x > 0 and x : inf, y : inf, x  y > und, for +example. +In short, this code is highly experimental; you should not use it for +anything that is important. I place it in /share/contrib because +others encouraged me too; also I thought it might be useful to others +who would like to experiment with similar code. Since a great deal of +work has gone into the current simplus code, I'm not sure that a total +rewrite is the best route. +Maybe the special case dispatch part of this code makes the task of +extending simplus (to intervals, for example) easier. The basic design +of this code is due to Barton Willis. +# # Fixed bugs: 
From: Mario Rodriguez Riotorto <riotorto@us...>  20080901 11:36:45

Update of /cvsroot/maxima/maxima/share/contrib/distrib In directory sc8prcvs16.sourceforge.net:/tmp/cvsserv2462 Modified Files: distrib.mac Log Message: Fixing bug in pdf_continuous_uniform Index: distrib.mac =================================================================== RCS file: /cvsroot/maxima/maxima/share/contrib/distrib/distrib.mac,v retrieving revision 1.10 retrieving revision 1.11 diff u d r1.10 r1.11  distrib.mac 18 Aug 2008 08:08:44 0000 1.10 +++ distrib.mac 1 Sep 2008 11:36:36 0000 1.11 @@ 795,7 +795,7 @@ then return(funmake('pdf_continuous_uniform,[x,a,b])), if member(sign(xa), ['nz,'neg,'zero]) or member(sign(xb), ['pos,'pz,'zero]) then 0  else if sign(xa) = 'pos and sign(xb) = 'pos + else if sign(xa) = 'pos and sign(bx) = 'pos then 1/(ba) else funmake('pdf_continuous_uniform,[x,a,b]) )$ 