You can subscribe to this list here.
2001 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}
(20) 
_{Dec}
(17) 

2002 
_{Jan}
(39) 
_{Feb}
(21) 
_{Mar}
(33) 
_{Apr}
(135) 
_{May}
(53) 
_{Jun}
(88) 
_{Jul}
(47) 
_{Aug}
(59) 
_{Sep}
(207) 
_{Oct}
(40) 
_{Nov}
(7) 
_{Dec}
(26) 
2003 
_{Jan}
(49) 
_{Feb}
(39) 
_{Mar}
(117) 
_{Apr}
(50) 
_{May}
(62) 
_{Jun}
(6) 
_{Jul}
(19) 
_{Aug}
(24) 
_{Sep}
(11) 
_{Oct}
(11) 
_{Nov}
(49) 
_{Dec}
(9) 
2004 
_{Jan}
(29) 
_{Feb}
(123) 
_{Mar}
(32) 
_{Apr}
(53) 
_{May}
(52) 
_{Jun}
(19) 
_{Jul}
(33) 
_{Aug}
(10) 
_{Sep}
(76) 
_{Oct}
(86) 
_{Nov}
(171) 
_{Dec}
(163) 
2005 
_{Jan}
(147) 
_{Feb}
(121) 
_{Mar}
(120) 
_{Apr}
(126) 
_{May}
(120) 
_{Jun}
(213) 
_{Jul}
(76) 
_{Aug}
(79) 
_{Sep}
(140) 
_{Oct}
(83) 
_{Nov}
(156) 
_{Dec}
(202) 
2006 
_{Jan}
(181) 
_{Feb}
(171) 
_{Mar}
(157) 
_{Apr}
(98) 
_{May}
(96) 
_{Jun}
(97) 
_{Jul}
(193) 
_{Aug}
(76) 
_{Sep}
(130) 
_{Oct}
(63) 
_{Nov}
(196) 
_{Dec}
(253) 
2007 
_{Jan}
(256) 
_{Feb}
(293) 
_{Mar}
(276) 
_{Apr}
(258) 
_{May}
(181) 
_{Jun}
(91) 
_{Jul}
(108) 
_{Aug}
(69) 
_{Sep}
(107) 
_{Oct}
(179) 
_{Nov}
(137) 
_{Dec}
(121) 
2008 
_{Jan}
(124) 
_{Feb}
(129) 
_{Mar}
(192) 
_{Apr}
(201) 
_{May}
(90) 
_{Jun}
(86) 
_{Jul}
(115) 
_{Aug}
(142) 
_{Sep}
(49) 
_{Oct}
(91) 
_{Nov}
(95) 
_{Dec}
(218) 
2009 
_{Jan}
(230) 
_{Feb}
(149) 
_{Mar}
(118) 
_{Apr}
(72) 
_{May}
(77) 
_{Jun}
(68) 
_{Jul}
(102) 
_{Aug}
(72) 
_{Sep}
(89) 
_{Oct}
(76) 
_{Nov}
(125) 
_{Dec}
(86) 
2010 
_{Jan}
(75) 
_{Feb}
(90) 
_{Mar}
(89) 
_{Apr}
(121) 
_{May}
(111) 
_{Jun}
(66) 
_{Jul}
(75) 
_{Aug}
(66) 
_{Sep}
(66) 
_{Oct}
(166) 
_{Nov}
(121) 
_{Dec}
(73) 
2011 
_{Jan}
(74) 
_{Feb}

_{Mar}

_{Apr}
(14) 
_{May}
(22) 
_{Jun}
(31) 
_{Jul}
(53) 
_{Aug}
(37) 
_{Sep}
(23) 
_{Oct}
(25) 
_{Nov}
(31) 
_{Dec}
(28) 
2012 
_{Jan}
(18) 
_{Feb}
(11) 
_{Mar}
(32) 
_{Apr}
(17) 
_{May}
(48) 
_{Jun}
(37) 
_{Jul}
(23) 
_{Aug}
(54) 
_{Sep}
(15) 
_{Oct}
(11) 
_{Nov}
(19) 
_{Dec}
(22) 
2013 
_{Jan}
(11) 
_{Feb}
(32) 
_{Mar}
(24) 
_{Apr}
(37) 
_{May}
(31) 
_{Jun}
(14) 
_{Jul}
(26) 
_{Aug}
(33) 
_{Sep}
(40) 
_{Oct}
(21) 
_{Nov}
(36) 
_{Dec}
(84) 
2014 
_{Jan}
(23) 
_{Feb}
(20) 
_{Mar}
(27) 
_{Apr}
(24) 
_{May}
(31) 
_{Jun}
(27) 
_{Jul}
(34) 
_{Aug}
(26) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(23) 
_{Dec}
(73) 
2015 
_{Jan}
(33) 
_{Feb}
(8) 
_{Mar}
(24) 
_{Apr}
(45) 
_{May}
(27) 
_{Jun}
(19) 
_{Jul}
(4) 
_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 






1
(2) 
2
(12) 
3
(8) 
4
(11) 
5
(3) 
6
(4) 
7
(2) 
8
(1) 
9
(2) 
10
(4) 
11
(2) 
12
(3) 
13

14
(14) 
15
(1) 
16
(1) 
17
(18) 
18
(1) 
19
(11) 
20

21
(1) 
22

23
(8) 
24
(5) 
25
(7) 
26
(2) 
27
(4) 
28

29
(2) 

From: Stavros Macrakis <macrakis@us...>  20080218 20:58:11

Update of /cvsroot/maxima/maxima/src In directory sc8prcvs16.sourceforge.net:/tmp/cvsserv31495 Modified Files: solve.lisp Log Message: Add a few comments; change some fnc names for clarity Index: solve.lisp =================================================================== RCS file: /cvsroot/maxima/maxima/src/solve.lisp,v retrieving revision 1.19 retrieving revision 1.20 diff u d r1.19 r1.20  solve.lisp 6 Jan 2008 22:57:29 0000 1.19 +++ solve.lisp 18 Feb 2008 20:58:05 0000 1.20 @@ 306,7 +306,7 @@ (setq varlist vartemp)) (cond ((atom exp) (go a))  ((specasep exp) (solve1a exp mult)) + ((offormA*F<X>^N+B exp) (solve1a exp mult)) ((and (not (pcoefp exp)) (cddr exp) (not (equal 1 (setq *g (solventhp (cdddr exp) (cadr exp)))))) @@ 566,7 +566,7 @@ *has*var)) nil) ((equal (cadr exp) 1) (solvelin exp))  ((specasep exp) (solvespec exp t)) + ((offormA*F<X>^N+B exp) (solveA*F<X>^N+B exp t)) ((equal (cadr exp) 2) (solvequad exp)) ((not (equal 1 (setq *g (solventhp (cdddr exp) (cadr exp))))) (solventh exp *g)) @@ 699,30 +699,30 @@ (solve x var mult) (makesolution *roots *failures)) ;; Sees if expression is of the form A*F(X)^N+B. +;; Sees if expression is of the form A*F<X>^N+B. (defun specasep (e) +(defun offormA*F<X>^N+B (e) (and (memalike (pdis (list (car e) 1 1)) *has*var) (or (atom (caddr e)) (not (memalike (pdis (list (caaddr e) 1 1)) *has*var))) (or (null (cdddr e)) (equal (cadddr e) 0)))) ;; Solves the special case A*F(X)^N+B. +;; Solves the special case A*F<X>^N+B. (defun solvespec (exp $%emode) +(defun solveA*F<X>^N+B (exp $%emode) (prog (a b c) (setq a (pdis (caddr exp))) (setq c (pdis (list (car exp) 1 1))) (cond ((null (cdddr exp)) (return (solve c *var (* (cadr exp) mult))))) (setq b (pdis (pminus (cadddr (cdr exp)))))  (return (solvespec1 c + (return (solveA*F<X>^N+B1 c (simpnrt (div* b a) (cadr exp)) (makerat 1 (cadr exp)) (cadr exp))))) (defun solvespec1 (var root n thisn) +(defun solveA*F<X>^N+B1 (var root n thisn) (do ((thisn thisn (1 thisn))) ((zerop thisn)) (solve (add* var (mul* 1 root (power* '$%e (mul* 2 '$%pi '$%i thisn n)))) *var mult))) @@ 747,7 +747,7 @@ (setq brokennotfreeof nil) ;; For consistency, use backwards args.  +;; == (freeof var exp) but works even if solution is broken up ($breakup=t) (defun brokenfreeof (var exp) (cond ($breakup (do ((bnfo var (car bnfol)) @@ 830,6 +830,7 @@ ;; You mean you didn't do it because you were buggy. Hope you're fixed soon! ;; RWK +;; Solve <exp> = <*myvar> for <*var>, where <*myvar>=<op>(...) (defun usolve (exp op) (prog (inverse) (setq inverse 