You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(55) 
_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1
(1) 
2

3
(1) 
4

5

6

7

8
(1) 
9
(1) 
10
(2) 
11

12

13

14

15

16

17

18

19
(1) 
20
(4) 
21
(6) 
22

23
(1) 
24

25

26

27

28

29
(2) 
30







From: SourceForge.net <noreply@so...>  20120921 05:48:00

Bugs item #3337674, was opened at 20110627 08:46 Message generated for change (Settings changed) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3337674&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None >Status: Closed Resolution: Wont Fix Priority: 5 Private: No Submitted By: Dženan Zukić (dzenanz) Assigned to: Nobody/Anonymous (nobody) Summary: Symmetric matrix yields complex eigenvalues Initial Comment: When using eigenvectors command in wxMaxima, the following symmetric matrix yields complex eigenvalues: matrix([2621.4397,7823.3599,1111.2726],[7823.3599,23347.842,3316.4543],[1111.2726,3316.4543,471.08722]) All eigenvalues of a symmetric matrix should be real: http://en.wikipedia.org/wiki/Symmetric_matrix Maxima version: 5.24.0 Maxima build date: 20:39 4/5/2011 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8  Comment By: Raymond Toy (rtoy) Date: 20120818 16:52 Message: In addition, I think algorithms for symmetric matrices should be used, instead of a general eigen solver. I don't consider this a bug in maxima. Marking as pending/wontfix.  Comment By: Barton Willis (willisbl) Date: 20110628 21:00 Message: For a floating point evaluation of eigenvalues, you should use a purely numeric method, not a symbolic method. One (not the only) option is eigens_by_jacobi (symmetric and either binary64 or bigfloat entries).  Comment By: Dženan Zukić (dzenanz) Date: 20110628 05:37 Message: Thanks for suggestions, but I was using Maxima trying to verify some results obtained using numeric library. However after getting this nonsensical result from Maxima I used another numeric library and obtained similar results (difference was after some decimal points). I am not a frequent user of Maxima, and this problem has significantly lowered my faith in it.  Comment By: Barton Willis (willisbl) Date: 20110628 05:23 Message: I think the problem is that the default value of ratepsilon is too small; try this: (also do this same with ratepsilon : 1.0e8) (%i1) load(hypergeometric)$ (%i2) ratepsilon : 1.0e18$ (%i3) m : matrix([2621.4397,7823.3599,1111.2726],[7823.3599,23347.842,3316.4543],[1111.2726,3316.4543,471.08722])$ (%i4) first(eigenvalues(m)), ratprint : false$ (%i5) nfloat(%  conjugate(%),[],100); (%o5) [8.0266455652163197256568351091[46 digits]5913348171925384517960952b197*%i1.3377742608693866209428058515[46 digits]0985558028654230752993492b197,5.3510970434775464837712234061[46 digits]3942232114616923011973968b197*%i1.3377742608693866209428058515[46 digits]0985558028654230752993492b197,1.9934389902195135071021405630[46 digits]0374693317196116973450023b205*%i2.6755485217387732418856117030[46 digits]1971116057308461505986984b197] See also http://en.wikipedia.org/wiki/Casus_irreducibilis  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3337674&group_id=4933 
From: SourceForge.net <noreply@so...>  20120921 05:47:59

Bugs item #3435971, was opened at 20111110 00:02 Message generated for change (Settings changed) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3435971&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None >Status: Closed Resolution: Invalid Priority: 5 Private: No Submitted By: https://www.google.com/accounts () Assigned to: Nobody/Anonymous (nobody) Summary: eigenvectors produces wrong results Initial Comment: [vals,vec]:eigenvectors(matrix([0.2273,0.0852],[0.193,0.1794])); rat: replaced 0.0164436 by 1134/68963 = 0.01644360019141 rat: replaced 0.1794 by 897/5000 = 0.1794 rat: replaced 0.2273 by 2273/10000 = 0.2273 rat: replaced 0.01644360019141 by 1091/66348 = 0.01644360040996 rat: replaced 0.1794 by 897/5000 = 0.1794 rat: replaced 0.2273 by 2273/10000 = 0.2273 rat: replaced 1.2057635497678905E12 by 1/829350000000 = 1.2057635497678905E12 rat: replaced 2.1637741760636258E+11 by 216377417606/1 = 2.16377417606E+11 rat: replaced 2.1637741760636258E+11 by 216377417606/1 = 2.16377417606E+11 (%o40) [[[0.07289999842889,0.33380000157111],[1,1]],[[[1,1.812206572769953]],[[1, 1.25]]]] However, the eigenvectors should be [0.62166748, 0.78328126] and [0.46864735,0.88338534].  Comment By: Raymond Toy (rtoy) Date: 20120816 09:06 Message: The eigenvalues computed by maxima are correct. A : matrix([0.2273,0.0852],[0.193,0.1794]); A . vec[1][1]  vals[1][1] * vec[1][1] > matrix([0.0],[0.0]) A . vec[2][1]  vals[1][2] * vec[2][1] > matrix([0.2609],[.4728046948356808]) You were probably expecting the eigenvectors to be normalized to unit length. Eigenvectors are unique only up to a scale factor.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3435971&group_id=4933 
From: SourceForge.net <noreply@so...>  20120921 05:47:58

Bugs item #3479091, was opened at 20120124 10:55 Message generated for change (Settings changed) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3479091&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None >Status: Closed Resolution: Invalid Priority: 5 Private: No Submitted By: Ted Woollett (woollett) Assigned to: Nobody/Anonymous (nobody) Summary: realpart(1/e) # 1/realpart(e) case Initial Comment: Example in which e = sqrt ( sin (x) ) using gcl (%i1) fpprintprec:8$ (%i2) r1(x):= realpart(1/sqrt(sin(x)))$ (%i3) map('r1,[2,5,8,11,13]); (%o3) [1/sqrt(sin(2)),0,1/sqrt(sin(8)),0,1/sqrt(sin(13))] (%i4) float(%); (%o4) [1.0486897,0.0,1.0053637,0.0,1.5427268] (%i5) r2(x) := 1/realpart(sqrt(sin(x)))$ (%i6) map('r2,[2,5]); expt: undefined: 0 to a negative exponent. #0: r2(x=5)  an error. To debug this try: debugmode(true); (%i7) build_info()$ Maxima version: 5.26.0 Maxima build date: 22:48 1/15/2012 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8  Comment By: Raymond Toy (rtoy) Date: 20120816 09:10 Message: What exactly is the issue? I expect 1/realpart(e) to give a divide by zero error for x=5 since sqrt(sin(5)) is purely imaginary.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3479091&group_id=4933 
From: SourceForge.net <noreply@so...>  20120921 05:47:57

Bugs item #3525906, was opened at 20120511 10:25 Message generated for change (Settings changed) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3525906&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None >Status: Closed Resolution: Works For Me Priority: 5 Private: No Submitted By: ivan antonovich (ognelis) Assigned to: Nobody/Anonymous (nobody) Summary: bug in integrate(x*exp(a*x^2+b*x),x,X_0,inf) Initial Comment: Maxima 5.27.0 http://maxima.sourceforge.net using Lisp CLISP 2.48 (20090728) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%i1) display2d: false; (%o1) false (%i2) assume(a>0); (%o2) [a > 0] (%i3) expr: exp(a*x^2+b*x)*x; (%o3) x*%e^(b*xa*x^2) (%i4) res1:integrate(expr,x,X_0,inf)$ Is 2*a*X_0b positive, negative, or zero? positive; #============================================ #Let's do the integration once again: #============================================ (%i5) res1new:integrate(expr,x,X_0,inf)$ Is 2*a*X_0b positive, negative, or zero? positive; #============================================ #Let's see the results #============================================ #++++++++first++++++++++++ (%i6) factor(ratsimp(res1)); (%o6) %e^(b^2/(4*a))*(2*gamma_incomplete(1,(4*a^2*X_0^24*a*b*X_0+b^2)/(4*a)) *a*abs(2*a*X_0b) +2*gamma_incomplete(1/2, (4*a^2*X_0^24*a*b*X_0+b^2)/(4*a)) *a^(3/2)*b*X_0 gamma_incomplete(1/2,(4*a^2*X_0^24*a*b*X_0+b^2)/(4*a)) *sqrt(a)*b^2) /(4*a^2*abs(2*a*X_0b)) #++++++++second++++++++++++ (%i7) factor(ratsimp(res1new)); (%o7) (gamma_incomplete(1/2,(4*a^2*X_0^24*a*b*X_0+b^2)/(4*a))*sqrt(a)*b +2*gamma_incomplete(1,(4*a^2*X_0^24*a*b*X_0+b^2)/(4*a))*a) *%e^(b^2/(4*a)) /(4*a^2) #============================================ #The results are different!!! #============================================ #============================================ #Let's continue:(now 2 a X_0 b is negative) #============================================ (%i8) res2:integrate(expr,x,X_0,inf)$ Is 2*a*X_0b positive, negative, or zero? negative; (%i9) factor(ratsimp(res2)); (%o9) (gamma_incomplete(1/2,(4*a^2*X_0^24*a*b*X_0+b^2)/(4*a))*b 2*sqrt(%pi)*b 2*gamma_incomplete(1,(4*a^2*X_0^24*a*b*X_0+b^2)/(4*a))*sqrt(a)) *%e^(b^2/(4*a)) /(4*a^(3/2)) #============================================ #Let'see the difference between expressions with positive and negative 2 a X_0 b #============================================ (%i10) factor(ratsimp(res2res1new)); (%o10) (gamma_incomplete(1/2,(4*a^2*X_0^24*a*b*X_0+b^2)/(4*a))sqrt(%pi)) *b*%e^(b^2/(4*a)) /(2*a^(3/2)) #============================================ #But the results must be the same. #============================================ P.S. integrate(x^n*exp(a*x^2+b*x),x,X_0,inf) can be programmed as diff(integrate(exp(a*x^2+b*x),x,X_0,inf),b,n). To verify this one needs to change the order of integration and differentiation. The result can be obtained in terms of the error function. There is only one conditition  a>0.  Comment By: Raymond Toy (rtoy) Date: 20120815 09:38 Message: In maxima 5.28post, the two integrals are identical for both 2*a*X_0b positive and negative. Marking as pending/worksforme  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3525906&group_id=4933 
From: SourceForge.net <noreply@so...>  20120921 05:47:56

Bugs item #3533747, was opened at 20120608 20:27 Message generated for change (Settings changed) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3533747&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Xmaxima or other UI Group: None >Status: Closed Resolution: Works For Me Priority: 5 Private: No Submitted By: caposar () Assigned to: Nobody/Anonymous (nobody) Summary: plot2d: expression evaluates to nonnumeric value somewhere Initial Comment: Revisando los videos de ejemplo de Javier Arantegui "13. Animaciones (1a parte).mp4" en wxMaxim 12.04.0 me sale este error: plot2d: expression evaluates to nonnumeric value somewhere build_info("5.27.0","20120508 11:27:57","i686pcmingw32","GNU Common Lisp (GCL)","GCL 2.6.8")  Comment By: Raymond Toy (rtoy) Date: 20120815 09:32 Message: I don't know what with_slider does, but plot2d(subst(tau=v, f(t)), [t,0,4]) for various values of tau between .1 and 1 work fine. Marking as pending/worksforme.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3533747&group_id=4933 
From: SourceForge.net <noreply@so...>  20120921 05:47:55

Bugs item #3539220, was opened at 20120630 18:06 Message generated for change (Settings changed) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3539220&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Floating point Group: None >Status: Closed Resolution: Wont Fix Priority: 5 Private: No Submitted By: MukundNaik (mukundnaik) Assigned to: Nobody/Anonymous (nobody) Summary: Romberg Integral yields zero value Initial Comment: build_info("5.27.0","20120508 11:27:57","i686pcmingw32","GNU Common Lisp (GCL)","GCL 2.6.8") m1(x):=(1cos(%pi*x))*(1cos(%pi*x*2/3))*(1cos(%pi*x*2/5))*(1cos(%pi*x*2/7))/16; wxplot2d([m1(x)], [x,32,36], [y,0,0.6], [gnuplot_preamble, "set grid;"])$ romberg(m1(x), x, 32, 36); yields Zero. The plot above shows that it is not zero everywhere in the region 3236. In fact, romberg(m1(x), x, 32, 33) = 0.051305498551289 romberg(m1(x), x, 33, 34)=0.016230140453864 romberg(m1(x), x, 34, 35)=0.0014305334087985 romberg(m1(x), x, 35, 36)=2.3489482722215246*10^4.  Comment By: Raymond Toy (rtoy) Date: 20120815 09:27 Message: 1. Update summary to reflect this is a romberg issue, not symbolic integration. 2. Change category to floatingpoint 3. Changed visibility to nonprivate. Try changing some of the variables that control romberg integration. Changing rombergmin to 1 gives romberg(m1(x),x,32,36) > 0.0692, which is very close to the value of the symbolic integral.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3539220&group_id=4933 