You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(70) 
S  M  T  W  T  F  S 




1

2
(3) 
3

4
(4) 
5

6

7

8

9

10
(1) 
11

12
(1) 
13
(6) 
14

15
(13) 
16
(5) 
17
(5) 
18
(3) 
19
(3) 
20
(1) 
21
(2) 
22
(2) 
23
(3) 
24

25

26

27
(1) 
28

29

30

31
(1) 

From: SourceForge.net <noreply@so...>  20120831 15:03:34

Bugs item #3558096, was opened at 20120815 17:46 Message generated for change (Comment added) made by aleksasd You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3558096&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: JeanYves (jyoberle) Assigned to: Nobody/Anonymous (nobody) Summary: to_poly_solve gives a wrong solution for cos(x)=sin(3x) Initial Comment: Hi, When doing: load(to_poly_solve); algexact:true; to_poly_solve(cos(x)sin(3*x),x); I get: to_poly_solve: to_poly_solver.mac is obsolete; I'm loading to_poly_solve.mac instead. %union([x=(4*%pi*%z0+%pi)/4],[x=(4*%pi*%z1+%pi)/8]) But I think that the first solution should be (based on hand solving): (4*%pi*%z0+%pi)/4 (no minus sign). For example: if we consider %z0 = 0 in the to_poly_solve solution, we get x=%pi/4 which is not a solution of the equation cos(x)sin(3*x). On the other hand, if we set %z0 = 0 in the hand found solution, we get x=%pi/4 which is a solution. The build_info is: build_info("5.27.0","20120508 11:27:57","i686pcmingw32","GNU Common Lisp (GCL)","GCL 2.6.8"). Best regards, JeanYves  Comment By: Aleksas (aleksasd) Date: 20120831 08:03 Message: To finding all solutions of trigonometric equation eq from interval [a, b] we define function "trigsolve": (%i1) trigsolve(eq,a,b):=block([s,i,ats,algebraic], algebraic:true, to_poly_solve([eq], [x],'simpfuncs = ['rootscontract,'expand,'radcan,'nicedummies]), s:makelist(rhs(part(%%,k)[1]),k,1,length(%%)), ats:[], for i:1 thru length(s) do (makelist(ev(s[i],%z0=k),k,10,10), ats:append(ats,%%)), sublist(ats,lambda([e],e>=a and e<=b and float(ev(abs(lhs(eq)rhs(eq)),x=e))<ratepsilon)), sort(%%), setify(%%) )$ Example: solve cos(x)sin(3*x)=0 (%i2) eq:cos(x)sin(3*x)=0$ (%i3) cos(x)cos(y)=2*sin(1/2*x+1/2*y)*sin(1/2*x1/2*y)$ (%i4) subst(y=3*x%pi/2,%),expand; (%o4) cos(x)sin(3*x)=2*sin(x%pi/4)*sin(2*x%pi/4) (%i5) eq1:sin(x%pi/4)=0$ (%i6) eq2:sin(2*x%pi/4)=0$ (%i7) S1:trigsolve(eq1,%pi,%pi); to_poly_solve: to_poly_solver.mac is obsolete; I'm loading to_poly_solve.mac instead. Loading maximagrobner $Revision: 1.6 $ $Date: 20090602 07:49:49 $ (%o7) {(3*%pi)/4,%pi/4} (%i8) S2:trigsolve(eq2,%pi,%pi); (%o8) {(7*%pi)/8,(3*%pi)/8,%pi/8,(5*%pi)/8} (%i9) S:union(S1,S2); (%o9) {(7*%pi)/8,(3*%pi)/4,(3*%pi)/8,%pi/8,%pi/4,(5*%pi)/8} (%i10) float(%), numer; (%o10) {2.748893571891069,2.356194490192345,1.178097245096172,0.39269908169872,0.78539816339745,1.963495408493621} Answer: x=a+2*%pi*k, where a  any from S, k  any integer (%i11) plot2d([cos(x)sin(3*x)], [x,%pi,%pi])$  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3558096&group_id=4933 