You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(15) 
_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 

1

2

3
(8) 
4

5
(1) 
6

7

8
(1) 
9

10

11
(1) 
12
(1) 
13
(1) 
14
(1) 
15
(1) 
16

17

18

19

20

21

22
(2) 
23

24
(3) 
25

26
(3) 
27
(4) 
28
(2) 
29

30






From: SourceForge.net <noreply@so...>  20120422 14:21:10

Bugs item #3520321, was opened at 20120422 07:21 Message generated for change (Tracker Item Submitted) made by You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3520321&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: https://www.google.com/accounts () Assigned to: Nobody/Anonymous (nobody) Summary: inconsistency with complex numbers? Initial Comment: Dear developers and users of Maxima, troubleshooting a program of mine, I have discovered a Maxima's behaviour which appears inconsistent to me. There is a strange utilization of integer, real and complex numbers. Input of the example: kill(all)$ a: 0.1+%i*0.0; b: 0.0+%i*0.0; c: 0.0+%i*0.1; d: 0.1+%i*0.1; realpart(b); realpart(c); is(realpart(a)=realpart(d)); is(realpart(b)=realpart(c)); is(imagpart(c)=imagpart(d)); is(imagpart(a)=imagpart(b)); exp(%i*0); exp(%i*0.0); limit(exp(%i*x),x,0.0,plus); is(limit(exp(%i*x),x,0.0,plus)=exp(%i*0.0)); build_info(); output of the example: 0.1 0.0 0.1*%i 0.1*%i+0.1 0.0 0 true false true true 1 1.0 1 false Maxima version: 5.26.0 Maxima build date: 22:48 1/15/2012 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8 Particularly interesting the tests: is(realpart(b)=realpart(c)) is(limit(exp(%i*x),x,0.0,plus)=exp(%i*0.0)) both should produce true rather than false. Any idea about? Do I improperly/wrongly use Maxima? Is it a Maxima's bug? Thanks in advance for your support. Kind Regards Claudio  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3520321&group_id=4933 
From: SourceForge.net <noreply@so...>  20120422 11:44:17

Bugs item #3510745, was opened at 20120324 02:09 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3510745&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None >Status: Pending >Resolution: Works For Me Priority: 5 Private: No Submitted By: drunas97 (drunas97) Assigned to: Nobody/Anonymous (nobody) Summary: integrate gives strange results Initial Comment:  Maxima version: 5.26.0 Maxima build date: 22:48 1/15/2012 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8  I try to integrate functions of such a type: Kvar(f,N,t1,t2):=N/(N1)*(sin(%pi*f*t2)/(%pi*f*t2))^2*(1(sin(N*%pi*f*t1)/(N*sin(%pi*f*t1)))^2) they all are absolutely integrable. but maxima gives: integrate(Kvar(f,2,1,1),f,0,inf); defint: integral is divergent.  an error. To debug this try: debugmode(true); integrate(Kvar(f,2,1,1),f,0,inf),numer; 0.15915494309189*%pi integrate(Kvar(f,2,1,1),f,0.0,inf),numer; `quotient' by `zero'  an error. To debug this try: debugmode(true); I thought the mistakes originate from defining Kvar(f,N,t1,t2) at f=0 (0/0), so i changed the integration limits: integrate(Kvar(f,2,1,1),f,0.1,1); (2*%i*%pi*gamma_incomplete(1,4*%i*%pi)4*%i*%pi*gamma_incomplete(1,2*%i*%pi)2*%i*%pi*gamma_incomplete(1,(2*%i*%pi)/5)+4*%i*%pi*gamma_incomplete(1,(%i*%pi)/5) 4*%i*%pi*gamma_incomplete(1,(%i*%pi)/5)+2*%i*%pi*gamma_incomplete(1,(2*%i*%pi)/5)+4*%i*%pi*gamma_incomplete(1,2*%i*%pi)2*%i*%pi*gamma_incomplete(1,4*%i*%pi)27 )/(4*%pi^2) integrate(Kvar(f,2,1,1),f,0.1,1),numer; `quotient' by `zero'  an error. To debug this try: debugmode(true); At the same time: quad_qag(Kvar(f,2,1,1),f,0.1,1,6); [0.42152826647711,4.6799038697321796*10^15,61,0]  >Comment By: Dan Gildea (dgildea) Date: 20120422 04:44 Message: seems to be fixed in current sources. (%i13) Kvar(f,N,t1,t2):=N/(N1)*(sin(%pi*f*t2)/(%pi*f*t2))^2*(1(sin(N*%pi*f*t1)/(N*sin(%pi*f*t1)))^2); (%o13) Kvar(f,N,t1,t2):=N/(N1)*(sin(%pi*f*t2)/(%pi*f*t2))^2 *(1(sin(N*%pi*f*t1)/(N*sin(%pi*f*t1)))^2) (%i14) integrate(Kvar(f,2,1,1),f,0,inf); (%o14) 1/2  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3510745&group_id=4933 