You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(45) 
_{Dec}

S  M  T  W  T  F  S 


1
(3) 
2
(2) 
3
(9) 
4
(7) 
5
(4) 
6
(1) 
7
(1) 
8

9
(2) 
10
(2) 
11
(3) 
12
(2) 
13
(1) 
14
(2) 
15
(1) 
16

17
(1) 
18
(1) 
19
(2) 
20
(1) 
21
(2) 
22
(5) 
23
(2) 
24
(7) 
25
(6) 
26
(1) 
27
(3) 
28
(1) 
29

30
(1) 
31




From: SourceForge.net <noreply@so...>  20110802 23:18:44

Bugs item #3377380, was opened at 20110725 14:04 Message generated for change (Comment added) made by dloksnel You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3377380&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Art Lenskold (dloksnel) Assigned to: Nobody/Anonymous (nobody) Summary: 7 nested levels Initial Comment: solve([0=x^21+(a(tx)*(t+1/(2*((tx)^2+(bsqrt(1x^2))^2))*(2(b*xt*sqrt(1x^2))*(bsqrt(1x^2))2*(x^2*(b^2t^2)*(x^22+2*t*xt^2)+t^2*(x^2+b^21)(2*t*xx^2)*(1+b^2+t^22*t*x)2*b*sqrt(1x^2)*((tx)^2+t*x*(x^2+2*t*xt^22)))^(1/2)))^1*(a+(11/(4*((tx)^2+(bsqrt(1x^2))^2)^2)*(4*(b*xt*sqrt(1x^2))^2*(bsqrt(1x^2))^28*(x^2*(b^2t^2)*(x^22+2*t*xt^2)+t^2*(x^2+b^21)(2*t*xx^2)*(1+b^2+t^22*t*x)2*b*sqrt(1x^2)*((tx)^2+t*x*(x^2+2*t*xt^22)))^(1/2)*(b*xt*sqrt(1x^2))*(bsqrt(1x^2))+4*(x^2*(b^2t^2)*(x^22+2*t*xt^2)+t^2*(x^2+b^21)(2*t*xx^2)*(1+b^2+t^22*t*x)2*b*sqrt(1x^2)*((tx)^2+t*x*(x^2+2*t*xt^22)))))^(1/2)))^2 ], [x] ); Maxima version: 5.24.0 Maxima build date: 20:39 4/5/2011 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8  >Comment By: Art Lenskold (dloksnel) Date: 20110802 19:18 Message: Thank you for correcting an error on my part. Did you use a diagnostic tool or was it the result of eyeballing the error ? Attached is a somewhat improved corrected expression.  Comment By: Barton Willis (willisbl) Date: 20110801 20:38 Message: The (2(b*x ... makes this an invalid expression solve([0=x^21+(a(tx)*(t+1/(2*((tx)^2+(bsqrt(1x^2))^2))*(2(b*x < Maybe you could post a corrected expression  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3377380&group_id=4933 
From: SourceForge.net <noreply@so...>  20110802 00:38:29

Bugs item #3377380, was opened at 20110725 13:04 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3377380&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Art Lenskold (dloksnel) Assigned to: Nobody/Anonymous (nobody) Summary: 7 nested levels Initial Comment: solve([0=x^21+(a(tx)*(t+1/(2*((tx)^2+(bsqrt(1x^2))^2))*(2(b*xt*sqrt(1x^2))*(bsqrt(1x^2))2*(x^2*(b^2t^2)*(x^22+2*t*xt^2)+t^2*(x^2+b^21)(2*t*xx^2)*(1+b^2+t^22*t*x)2*b*sqrt(1x^2)*((tx)^2+t*x*(x^2+2*t*xt^22)))^(1/2)))^1*(a+(11/(4*((tx)^2+(bsqrt(1x^2))^2)^2)*(4*(b*xt*sqrt(1x^2))^2*(bsqrt(1x^2))^28*(x^2*(b^2t^2)*(x^22+2*t*xt^2)+t^2*(x^2+b^21)(2*t*xx^2)*(1+b^2+t^22*t*x)2*b*sqrt(1x^2)*((tx)^2+t*x*(x^2+2*t*xt^22)))^(1/2)*(b*xt*sqrt(1x^2))*(bsqrt(1x^2))+4*(x^2*(b^2t^2)*(x^22+2*t*xt^2)+t^2*(x^2+b^21)(2*t*xx^2)*(1+b^2+t^22*t*x)2*b*sqrt(1x^2)*((tx)^2+t*x*(x^2+2*t*xt^22)))))^(1/2)))^2 ], [x] ); Maxima version: 5.24.0 Maxima build date: 20:39 4/5/2011 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8  >Comment By: Barton Willis (willisbl) Date: 20110801 19:38 Message: The (2(b*x ... makes this an invalid expression solve([0=x^21+(a(tx)*(t+1/(2*((tx)^2+(bsqrt(1x^2))^2))*(2(b*x < Maybe you could post a corrected expression  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3377380&group_id=4933 