You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(101) 
_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 


1
(6) 
2

3
(2) 
4

5
(3) 
6

7
(5) 
8
(6) 
9
(1) 
10
(3) 
11
(2) 
12
(1) 
13

14
(3) 
15
(1) 
16
(4) 
17

18
(2) 
19

20
(1) 
21
(5) 
22
(3) 
23

24

25
(2) 
26
(4) 
27
(1) 
28
(3) 
29
(1) 
30
(1) 




From: SourceForge.net <noreply@so...>  20101108 22:26:04

Bugs item #3105547, was opened at 20101108 16:37 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3105547&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Tests Group: None >Status: Pending >Resolution: Wont Fix Priority: 5 Private: No Submitted By: https://me.yahoo.com/a/PB0qoCkd () Assigned to: Nobody/Anonymous (nobody) Summary: Problem 383 in rtest16 fails Initial Comment: After building sbcl1.0.43 on Ubuntu maverick x86_64 and runing runtests.sh I got : Finished running tests. Status: Expected failure: packages.impure.lisp / USEPACKAGECONFLICTSET Expected failure: packages.impure.lisp / IMPORTSINGLECONFLICT ok //apparent success (reached end of runtests.sh normally) Making distclean in maxima5.22.1directory and configure/make I started make check and got: ... Running tests in rtest16: ********************** Problem 383 *************** Input: block([numer : true], is(abs(zeta(%i + 3)  (1.10721440843141  .1482908671781754 %i)) < 1.e15)) Result: false This differed from the expected result: true 462/463 tests passed ... and in wxmaxima 0.8.5: (%i1) build_info()$ Maxima version: 5.22.1 Maxima build date: 20:40 11/8/2010 Host type: x86_64unknownlinuxgnu Lisp implementation type: SBCL Lisp implementation version: 1.0.43 (%i2) is(abs(zeta(%i + 3)  (1.10721440843141  .1482908671781754 %i)) < 1.e15); incorrect syntax: %I is not an infix operator 1482908671781754 %i) ^ (%i2) is(abs(zeta(%i + 3)  (1.10721440843141  .1482908671781754*%i)) < 1.e15); (%o2) false (%i3) if numer#false then numer:false else numer:true; (%o3) true (%i4) abs(zeta(%i + 3)  (1.10721440843141  .1482908671781754*%i)); (%o4) 3.3157171357748244*10^9 which is huge compared to 1.e15.  >Comment By: Raymond Toy (rtoy) Date: 20101108 17:26 Message: This is really an issue with how sbcl computes (cl:expt 2 #c(1d0 2d0)). I think sbcl computes x^y using exp(y*log(x)). Since x here is an integer log(x) is a singlefloat, and hence the result only has singlefloat accuracy, even though the result is returned as a doublefloat. I have heard from from sbcl developers that this will be fixed. This was also discussed in the mailing list, and it was agreed to let the underlying Lisps fix this. Marking as Pending/Wontfix.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3105547&group_id=4933 
From: SourceForge.net <noreply@so...>  20101108 21:40:03

Bugs item #3105512, was opened at 20101108 21:22 Message generated for change (Comment added) made by giniu You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3105512&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Pending Resolution: Works For Me Priority: 5 Private: No Submitted By: Andrzej Giniewicz (giniu) Assigned to: Nobody/Anonymous (nobody) Summary: integrate(s^2 * exp( (a+b) * s^2 ), s) returns bad result Initial Comment: integrate(s^2 * exp( (a+b) * s^2 ), s); returns bad result, i.e. for example for s=1 it's off by \frac{\sqrt{pi}}{4(a+b)^{3/2}} (for s=1 it's easy to verify that it's bad answer). It would be correct if Erfc=Erf, but it isn't of course  maybe some transformations in progress fail? What's funny, integrate(s^2 * exp( a * s^2 ), s); works and gives correct result. I tested it with Maxima 5.22.1.  Comment By: Andrzej Giniewicz (giniu) Date: 20101108 22:40 Message: Indeed, I missed it I tested the diff on older version. Anyway, what is the reason for the difference in form of result in integrating (s^2 * exp( (a+b) * s^2 )); and (s^2 * exp( a * s^2 ));?  Comment By: Dieter Kaiser (crategus) Date: 20101108 22:04 Message: I do not see a real problem, because we can verify the following: (%i1) (s^2 * exp( (a+b) * s^2 )); (%o1) s^2*%e^((ba)*s^2) (%i2) integrate(%,s); (%o2) gamma_incomplete(3/2,(b+a)*s^2)*s/(2*(b+a)^(3/2)*abs(s)) (%i3) diff(%,s); (%o3) s^2*%e^((b+a)*s^2) We get back the integrand. I have compared the result with a result from Wolfram alpha. It is possible to expand the integral in terms of the erf function. The integrals differ by a constant term sqrt(%pi)/(4*(a+b)^3/2). That is the result of this bug report too. But this is not an error. The result might be not the expected result, but it is not wrong. Setting the status to pending and the resolution to "works for me". Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3105512&group_id=4933 
From: SourceForge.net <noreply@so...>  20101108 21:37:11

Bugs item #3105547, was opened at 20101108 21:37 Message generated for change (Tracker Item Submitted) made by You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3105547&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Tests Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: https://me.yahoo.com/a/PB0qoCkd () Assigned to: Nobody/Anonymous (nobody) Summary: Problem 383 in rtest16 fails Initial Comment: After building sbcl1.0.43 on Ubuntu maverick x86_64 and runing runtests.sh I got : Finished running tests. Status: Expected failure: packages.impure.lisp / USEPACKAGECONFLICTSET Expected failure: packages.impure.lisp / IMPORTSINGLECONFLICT ok //apparent success (reached end of runtests.sh normally) Making distclean in maxima5.22.1directory and configure/make I started make check and got: ... Running tests in rtest16: ********************** Problem 383 *************** Input: block([numer : true], is(abs(zeta(%i + 3)  (1.10721440843141  .1482908671781754 %i)) < 1.e15)) Result: false This differed from the expected result: true 462/463 tests passed ... and in wxmaxima 0.8.5: (%i1) build_info()$ Maxima version: 5.22.1 Maxima build date: 20:40 11/8/2010 Host type: x86_64unknownlinuxgnu Lisp implementation type: SBCL Lisp implementation version: 1.0.43 (%i2) is(abs(zeta(%i + 3)  (1.10721440843141  .1482908671781754 %i)) < 1.e15); incorrect syntax: %I is not an infix operator 1482908671781754 %i) ^ (%i2) is(abs(zeta(%i + 3)  (1.10721440843141  .1482908671781754*%i)) < 1.e15); (%o2) false (%i3) if numer#false then numer:false else numer:true; (%o3) true (%i4) abs(zeta(%i + 3)  (1.10721440843141  .1482908671781754*%i)); (%o4) 3.3157171357748244*10^9 which is huge compared to 1.e15.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3105547&group_id=4933 
From: SourceForge.net <noreply@so...>  20101108 21:04:55

Bugs item #3105512, was opened at 20101108 21:22 Message generated for change (Settings changed) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3105512&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None >Status: Pending >Resolution: Works For Me Priority: 5 Private: No Submitted By: Andrzej Giniewicz (giniu) Assigned to: Nobody/Anonymous (nobody) Summary: integrate(s^2 * exp( (a+b) * s^2 ), s) returns bad result Initial Comment: integrate(s^2 * exp( (a+b) * s^2 ), s); returns bad result, i.e. for example for s=1 it's off by \frac{\sqrt{pi}}{4(a+b)^{3/2}} (for s=1 it's easy to verify that it's bad answer). It would be correct if Erfc=Erf, but it isn't of course  maybe some transformations in progress fail? What's funny, integrate(s^2 * exp( a * s^2 ), s); works and gives correct result. I tested it with Maxima 5.22.1.  >Comment By: Dieter Kaiser (crategus) Date: 20101108 22:04 Message: I do not see a real problem, because we can verify the following: (%i1) (s^2 * exp( (a+b) * s^2 )); (%o1) s^2*%e^((ba)*s^2) (%i2) integrate(%,s); (%o2) gamma_incomplete(3/2,(b+a)*s^2)*s/(2*(b+a)^(3/2)*abs(s)) (%i3) diff(%,s); (%o3) s^2*%e^((b+a)*s^2) We get back the integrand. I have compared the result with a result from Wolfram alpha. It is possible to expand the integral in terms of the erf function. The integrals differ by a constant term sqrt(%pi)/(4*(a+b)^3/2). That is the result of this bug report too. But this is not an error. The result might be not the expected result, but it is not wrong. Setting the status to pending and the resolution to "works for me". Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3105512&group_id=4933 
From: SourceForge.net <noreply@so...>  20101108 20:22:28

Bugs item #3105512, was opened at 20101108 21:22 Message generated for change (Tracker Item Submitted) made by giniu You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3105512&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Andrzej Giniewicz (giniu) Assigned to: Nobody/Anonymous (nobody) Summary: integrate(s^2 * exp( (a+b) * s^2 ), s) returns bad result Initial Comment: integrate(s^2 * exp( (a+b) * s^2 ), s); returns bad result, i.e. for example for s=1 it's off by \frac{\sqrt{pi}}{4(a+b)^{3/2}} (for s=1 it's easy to verify that it's bad answer). It would be correct if Erfc=Erf, but it isn't of course  maybe some transformations in progress fail? What's funny, integrate(s^2 * exp( a * s^2 ), s); works and gives correct result. I tested it with Maxima 5.22.1.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3105512&group_id=4933 
From: SourceForge.net <noreply@so...>  20101108 15:24:36

Bugs item #3085498, was opened at 20101011 16:45 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3085498&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Aleksas Domarkas (alex108) Assigned to: Nobody/Anonymous (nobody) Summary: integration error Initial Comment: The arc length S of one arch of cycloid x(t)=a*(tsin(t)) y(t)=a*(1cos(t)) (%i1) x(t):=a*(tsin(t)); y(t):=a*(1cos(t)); (%o1) x(t):=a*(tsin(t)) (%o2) y(t):=a*(1cos(t)) (%i3) assume(a>0); (%o3) [a>0] (%i4) S='integrate(sqrt(diff(x(t),t)^2+diff(y(t),t)^2),t,0,2*%pi); (%o4) S=integrate(sqrt(a^2*sin(t)^2+a^2*(1cos(t))^2),t,0,2*%pi) (%i5) trigsimp(%); (%o5) S=integrate(sqrt(2*a^22*a^2*cos(t)),t,0,2*%pi) (%i6) ev(%, nouns); (%o6) S=0 S=8*a ???  >Comment By: Dan Gildea (dgildea) Date: 20101108 10:24 Message: Fixed in rpart.lisp rev 1.39 by using the flag generateatan2.  Comment By: Dieter Kaiser (crategus) Date: 20101107 17:28 Message: I have committed a patch with revision 1.80 of sin.lisp to restore the behavior of trigint to change the variable of integration. This solves the first problem of this bug report. The second change, that carg(exp(%i*t)) simplifies to atan2(sin(t),cos(t)) and not to t is still present. Dieter Kaiser  Comment By: Dieter Kaiser (crategus) Date: 20101107 10:34 Message: You are right and I think I have got the bug I have introduced. In a old version of trigint the name of the variable is changed before calling again the integrator. This has changed and causes no problems as long as we have no assumptions on the variable of integration. But defint puts assumptions on the variable of integration into the database. Because of this in a old version of trigint Maxima does not get a result because the assumptions are not present for the integration. The new version gets a result, because of the additional assumptions. The following code and the end of the routine trigint restores the old behavior and changes the name of the variable of integration. With this code the integration is done without any assumption on the variable of integration. (return (let (($triginverses '$all) (genvar (gensym))) (substint repl genvar (integrator (maximasubstitute genvar var y) genvar)))))) With this correction I get: (%i42) S=integrate(sqrt(a^2*sin(t)^2+a^2*(1cos(t))^2),t,0,2*%pi); (%o42) S = 8 a Dieter Kaiser  Comment By: Dan Gildea (dgildea) Date: 20101107 08:34 Message: It looks like in current cvs, rischint is not called for this integral. If I revert rpart.lisp to 1.35, I still get: (%i3) integrate(sqrt(1cos(t)),t,0,2*%pi); (%o3) 0 If I revert sin.lisp to 1.68, or if I make the change below, I get the call to rischint with a result containing atan2 as you show. (In this case, the final result is computed with easysubs, and the limit code is not called.) If I revert sin.lisp to 1.68 and I revert rpart.lisp to 1.35, I get the correct answer. *** sin.lisp.~1.79.~ Sun Nov 7 08:23:04 2010  sin.lisp Sun Nov 7 08:23:40 2010 *************** *** 1614,1620 **** getout (setq y (list '(mtimes) *yy* *yz*)) get2 ! (setq y (maximasubstitute var 'x y)) (when *debugintegrate* (format t "~& Call the INTEGRATOR with:~%")  1614,1620  getout (setq y (list '(mtimes) *yy* *yz*)) get2 ! ;(setq y (maximasubstitute var 'x y)) (when *debugintegrate* (format t "~& Call the INTEGRATOR with:~%") *************** *** 1624,1630 **** ;; See Bug 2880797. We want atan(tan(x)) to simplify to x, so ;; set $triginverses to '$all. (return (let (($triginverses '$all)) ! (substint repl var (integrator y var)))))) (defmvar $integration_constant_counter 0) (defmvar $integration_constant '$%c)  1624,1630  ;; See Bug 2880797. We want atan(tan(x)) to simplify to x, so ;; set $triginverses to '$all. (return (let (($triginverses '$all)) ! (substint repl 'x (integrator y 'x)))))) (defmvar $integration_constant_counter 0) (defmvar $integration_constant '$%c)  Comment By: Dieter Kaiser (crategus) Date: 20101105 18:17 Message: I think the problem is not revision 1.69 of sin.lisp, but the generalization of carg(exp(x+%i*y)) > atan2(sin(y),cos(y)) with revision 1.36 of rpart.lisp. The example of this problem is not integrated by trigint but by rischint. rischint takes the realpart of the following expression: (sqrt(2)*%i*%e^(%i*t)sqrt(2)*%i)/sqrt(%e^(%i*t)); With Maxima 5.21 we get for the realpart: (%i16) res:(sqrt(2)*%i*%e^(%i*t)sqrt(2)*%i)/sqrt(%e^(%i*t)); (%o16) (sqrt(2)*%i*%e^(%i*t)sqrt(2)*%i)/sqrt(%e^(%i*t)) (%i17) realpart(res); (%o17) (sqrt(2)*cos(t)sqrt(2))*sin((t+%pi)/2)+sqrt(2)*sin(t)*cos((t+%pi)/2) But with Maxima 5.22post we get: (%i21) res:(sqrt(2)*%i*%e^(%i*t)sqrt(2)*%i)/sqrt(%e^(%i*t)); (%o21) (sqrt(2)*%i*%e^(%i*t)sqrt(2)*%i)/sqrt(%e^(%i*t)) (%i22) realpart(res); (%o22) (sqrt(2)*cos(t)sqrt(2))*sin((atan2(sin(t),cos(t))+%pi)/2) +sqrt(2)*sin(t)*cos((atan2(sin(t),cos(t))+%pi)/2) atan2(sin(t),cos(t)) is no longer simplified to t. In the limit we have limit(atan2(sin(y),cos(y)),t,2*%pi) > 0 but limit(t,t,2*%pi) > 2*%pi This causes the error for the integral. Dieter Kaiser  Comment By: Dan Gildea (dgildea) Date: 20101105 17:04 Message: Simple test case: (%i3) integrate(sqrt(1cos(t)),t,0,2*%pi); (%o3) 0 Before the commit of sin.lisp rev 1.69, we got: (%i3) integrate(sqrt(1cos(t)),t,0,2*%pi); (%o3) 2^(5/2)  Comment By: Robert Dodier (robert_dodier) Date: 20101019 00:17 Message: Observed w/ Maxima 5.22.1 + Clisp 2.48 + Linux and Maxima 5.22post + Clozure CL + Windows. Not observed w/ Maxima 5.21.1 + GCL + Windows, so maybe it's a recent bug.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3085498&group_id=4933 