You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(55) 
_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1
(7) 
2
(1) 
3
(4) 
4
(7) 
5
(1) 
6

7
(2) 
8
(7) 
9
(13) 
10
(1) 
11
(6) 
12
(4) 
13
(4) 
14
(2) 
15
(6) 
16

17
(3) 
18
(1) 
19
(3) 
20
(2) 
21
(4) 
22
(3) 
23
(8) 
24
(4) 
25
(6) 
26
(4) 
27
(14) 
28
(10) 
29
(3) 
30
(4) 
31
(4) 





From: SourceForge.net <noreply@so...>  20100519 23:35:35

Bugs item #2996542, was opened at 20100504 08:38 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2996542&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: akalinin (aleckalinin) Assigned to: Nobody/Anonymous (nobody) Summary: log(x) integration is incorrect Initial Comment: Correct behaviour in previous verison: wxMaxima 0.8.4, Maxima 5.20.1: integrate(log(x), x, 0, a) > a log(a) a Incorrect behaviour in current version: wxMaxima 0.8.5, Maxima 5.21.0: integrate(log(x), x, 0, a) > gamma_incomplete(2,log(a))  >Comment By: Raymond Toy (rtoy) Date: 20100519 19:35 Message: One possible solution. In dintlog, bind $gamma_expand to T when calling logx1. Then maxima returns a*log(a)a. However, this change causes 90 in rtestint to fail. The result is k1*gamma(k1) instead of gamma(1+k1).  Comment By: Raymond Toy (rtoy) Date: 20100517 23:31 Message: You are correct. Looks like the issue comes from dintlog. In 5.19.2, the antideriv was tried first, then logx1. In 5.21, logx1 is tried first, then antideriv. I do not know which is better. The commit message says the change helps remove the limit from some integrals. But it makes this particular integral not as nice.  Comment By: Dieter Kaiser (crategus) Date: 20100517 18:20 Message: We have the new algorithm of defintlogexp since Maxima 5.19. But the behavior for the log function has changed between 5.20 and 5.21. Therefore, I think it is not the algorithm of defintlogexp which has changed the integral of the log function, but some code which has been introduced later. Dieter Kaiser  Comment By: Raymond Toy (rtoy) Date: 20100517 16:01 Message: The new result comes from the new routine defintlogexp, which is called relatively early in defint. Perhaps it should be called later? I have not investigated this aspect yet.  Comment By: Dieter Kaiser (crategus) Date: 20100504 09:08 Message: Yes, the result has changed between Maxima 5.21 and 5.20. I do not know the reason at this time, but the new result is not really wrong. It simplifies to the old result with the flag gamma_expand: (%i1) assume(a>0)$ (%i2) integrate(log(x),x,0,a),gamma_expand:true; (%o2) a*log(a)a Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2996542&group_id=4933 
From: SourceForge.net <noreply@so...>  20100519 11:10:10

Bugs item #3003976, was opened at 20100519 04:44 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3003976&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: l_butler () Assigned to: Nobody/Anonymous (nobody) Summary: solve returns nonlinear solution to linear equations Initial Comment: It is present in CVS maxima, too. (%i1) build_info(); Maxima version: 5.21.1 Maxima build date: 14:2 5/18/2010 Host type: i686pclinuxgnu Lisp implementation type: CMU Common Lisp Lisp implementation version: CVS 19d 19drelease (19D) (%o1) "" eqs are linear in x,y and z. The solution should be linear (affine). (%i2) eqs:[z/sqrt(2*A^2+1)A*y/sqrt(2*A^2+1) A*x/sqrt(2*A^2+1)+A/sqrt(2*A^2+1), B*z/sqrt(2*B^2+16)B*y/sqrt(2*B^2+16) +4*x/sqrt(2*B^2+16) +B/sqrt(2*B^2+1)]$ neqs are similar. (%i3) neqs:subst(B=A,eqs)$ (%i4) solve(eqs,[x,y,z])$ (%i5) map(lambda([t],is(rhs(t)=0)),first(diff(%,last(%rnum_list),2))); This output should be all true. (%o5) [false,true,false] (%i6) solve(neqs,[x,y,z])$ (%i7) map(lambda([t],is(rhs(t)=0)),first(diff(%,last(%rnum_list),2))); And it is all true for neqs. (%o7) [true,true,true] Note that algsys doesn't have this problem. (%i8) algsys(eqs,[x,y,z])$ (%i9) map(lambda([t],is(rhs(t)=0)),first(diff(%,last(%rnum_list),2))); (%o9) [true,true,true] (%i10) algsys(neqs,[x,y,z])$ (%i11) map(lambda([t],is(rhs(t)=0)),first(diff(%,last(%rnum_list),2))); (%o11) [true,true,true]  >Comment By: Barton Willis (willisbl) Date: 20100519 06:10 Message: The problem is still present with B : 0. Also, I think the bug is in linsolve (%i80) eqs:[z/sqrt(2*A^2+1)A*y/sqrt(2*A^2+1) A*x/sqrt(2*A^2+1)+A/sqrt(2*A^2+1), B*z/sqrt(2*B^2+16)B*y/sqrt(2*B^2+16) +4*x/sqrt(2*B^2+16) +B/sqrt(2*B^2+1)]$ (%i81) ee : subst([B = 0],eqs); (%o81) [(y*A)/sqrt(2*A^2+1)(x*A)/sqrt(2*A^2+1)+A/sqrt(2*A^2+1)+z/sqrt(2*A^2+1),x] (%i82) linsolve(ee,[x,y,z]); (%o82) [x=0,y=%r21,z=%r21^2%r21]  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3003976&group_id=4933 
From: SourceForge.net <noreply@so...>  20100519 09:44:40

Bugs item #3003976, was opened at 20100519 09:44 Message generated for change (Tracker Item Submitted) made by You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3003976&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: l_butler () Assigned to: Nobody/Anonymous (nobody) Summary: solve returns nonlinear solution to linear equations Initial Comment: It is present in CVS maxima, too. (%i1) build_info(); Maxima version: 5.21.1 Maxima build date: 14:2 5/18/2010 Host type: i686pclinuxgnu Lisp implementation type: CMU Common Lisp Lisp implementation version: CVS 19d 19drelease (19D) (%o1) "" eqs are linear in x,y and z. The solution should be linear (affine). (%i2) eqs:[z/sqrt(2*A^2+1)A*y/sqrt(2*A^2+1) A*x/sqrt(2*A^2+1)+A/sqrt(2*A^2+1), B*z/sqrt(2*B^2+16)B*y/sqrt(2*B^2+16) +4*x/sqrt(2*B^2+16) +B/sqrt(2*B^2+1)]$ neqs are similar. (%i3) neqs:subst(B=A,eqs)$ (%i4) solve(eqs,[x,y,z])$ (%i5) map(lambda([t],is(rhs(t)=0)),first(diff(%,last(%rnum_list),2))); This output should be all true. (%o5) [false,true,false] (%i6) solve(neqs,[x,y,z])$ (%i7) map(lambda([t],is(rhs(t)=0)),first(diff(%,last(%rnum_list),2))); And it is all true for neqs. (%o7) [true,true,true] Note that algsys doesn't have this problem. (%i8) algsys(eqs,[x,y,z])$ (%i9) map(lambda([t],is(rhs(t)=0)),first(diff(%,last(%rnum_list),2))); (%o9) [true,true,true] (%i10) algsys(neqs,[x,y,z])$ (%i11) map(lambda([t],is(rhs(t)=0)),first(diff(%,last(%rnum_list),2))); (%o11) [true,true,true]  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3003976&group_id=4933 