You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(15) 
_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1
(7) 
2
(1) 
3
(4) 
4
(7) 
5
(1) 
6

7
(2) 
8
(7) 
9
(13) 
10
(1) 
11
(6) 
12
(4) 
13
(4) 
14
(2) 
15
(6) 
16

17
(3) 
18
(1) 
19
(3) 
20
(2) 
21
(4) 
22
(3) 
23
(8) 
24
(4) 
25
(6) 
26
(4) 
27
(14) 
28
(10) 
29
(3) 
30
(4) 
31
(4) 





From: SourceForge.net <noreply@so...>  20100513 20:27:36

Bugs item #3000108, was opened at 20100511 13:26 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3000108&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: uhlst (uhlst) Assigned to: Nobody/Anonymous (nobody) Summary: Inconsistency of 1x1matrices Initial Comment: I'm not quite sure whether this is a bug or not, but defining two 1x1 matrices and multiplying them with "." returns a scalar and not a matrix. Multiplying them both by "*" gives a matrix. It should in this case either give also a scalar or an error. So the question is, whether Maxima should automatically switch from 1x1 matrices to scalars and back. I think returning a scalar for the "." is ok if the same happens for "*". (%i7) kill(all); (%o0) done (%i1) a: matrix([1]);b: matrix([2]); (%o1) [ 1 ] (%o2) [ 2 ] (%i3) a.b; (%o3) 2 (%i4) a*b; (%o4) [ 2 ] (%i5) c: 2; (%o5) 2 (%i6) c.a; (%o6) [ 2 ] (%i7) c*a; (%o7) [ 2 ]  >Comment By: Barton Willis (willisbl) Date: 20100513 15:27 Message: I think setting doallmxops : false and domxmxops : false will do what you want. Maxima's dot operation is controlled by many sometimes confusing switches. But it's all documented (try ?domxmxops) (%i2) (A: matrix([1,2,3],[4,5,6],[7,8,9]),b:matrix([10,11,12])); (%o2) matrix([10,11,12]) (%i18) A .b,doallmxops : false, domxmxops : false; (%o18) matrix([1,2,3],[4,5,6],[7,8,9]) . matrix([10,11,12])  Comment By: uhlst (uhlst) Date: 20100513 13:29 Message: thank you for pointing me to scalarmatrixp. I was not aware of this option in Maxima. However, I still struggle with the automatic conversion of a row vector to a column vector. Is there also a option to switch this behaviour of? (%i1) display2d: false;A: matrix([1,2,3],[4,5,6],[7,8,9]);b: matrix([10,11,12]); (%o1) false (%o2) matrix([1,2,3],[4,5,6],[7,8,9]) (%o3) matrix([10,11,12]) (%i4) A.b; (%o4) matrix([68],[167],[266])  Comment By: Barton Willis (willisbl) Date: 20100512 04:49 Message: Maybe you would like to set scalarmatrixp to false: (%i4) matrix([a]) . matrix([b]), scalarmatrixp : false; (%o4) matrix([a*b]) (%i5) matrixp(%); (%o5) true (%i6) matrix([a]) . matrix([b]), scalarmatrixp : true; (%o6) a*b  Comment By: uhlst (uhlst) Date: 20100512 00:52 Message: here again the commands with display2d: false (%i2) display2d: false; (%o2) false (%i3) kill(all); (%o0) done (%i1) a: matrix([1],[2],[3]); (%o1) matrix([1],[2],[3]) (%i2) B: matrix([1,2,3],[4,5,6],[7,8,9]); (%o2) matrix([1,2,3],[4,5,6],[7,8,9]) (%i3) a.B; MULTIPLYMATRICES: attempt to multiply nonconformable matrices.  an error. To debug this try: debugmode(true); (%i4) B.(transpose(a)); (%o4) matrix([14],[32],[50]) (%i5) B.transpose(a); (%o5) matrix([14],[32],[50]) (%i6) B.a; (%o6) matrix([14],[32],[50])  Comment By: uhlst (uhlst) Date: 20100512 00:48 Message: perhaps related is the following "automatic" conversion that maxima does (%i15) kill(all); (%o0) done (%i1) a: matrix([1],[2],[3]); [ 1 ] [ ] (%o1) [ 2 ] [ ] [ 3 ] (%i2) B: matrix([1,2,3],[4,5,6],[7,8,9]); [ 1 2 3 ] [ ] (%o2) [ 4 5 6 ] [ ] [ 7 8 9 ] (%i3) a.B; MULTIPLYMATRICES: attempt to multiply nonconformable matrices.  an error. To debug this try: debugmode(true); (%i4) B.a; [ 14 ] [ ] (%o4) [ 32 ] [ ] [ 50 ] (%i5) B.(transpose(a)); [ 14 ] [ ] (%o5) [ 32 ] [ ] [ 50 ] (%i6) B.transpose(a); [ 14 ] [ ] (%o6) [ 32 ] [ ] [ 50 ] so multiplying a column vector with a square matrix from the left does not work but multiplying a matrix with a row vector from the left works.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3000108&group_id=4933 
From: SourceForge.net <noreply@so...>  20100513 18:29:47

Bugs item #3000108, was opened at 20100511 20:26 Message generated for change (Comment added) made by uhlst You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3000108&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: uhlst (uhlst) Assigned to: Nobody/Anonymous (nobody) Summary: Inconsistency of 1x1matrices Initial Comment: I'm not quite sure whether this is a bug or not, but defining two 1x1 matrices and multiplying them with "." returns a scalar and not a matrix. Multiplying them both by "*" gives a matrix. It should in this case either give also a scalar or an error. So the question is, whether Maxima should automatically switch from 1x1 matrices to scalars and back. I think returning a scalar for the "." is ok if the same happens for "*". (%i7) kill(all); (%o0) done (%i1) a: matrix([1]);b: matrix([2]); (%o1) [ 1 ] (%o2) [ 2 ] (%i3) a.b; (%o3) 2 (%i4) a*b; (%o4) [ 2 ] (%i5) c: 2; (%o5) 2 (%i6) c.a; (%o6) [ 2 ] (%i7) c*a; (%o7) [ 2 ]  >Comment By: uhlst (uhlst) Date: 20100513 20:29 Message: thank you for pointing me to scalarmatrixp. I was not aware of this option in Maxima. However, I still struggle with the automatic conversion of a row vector to a column vector. Is there also a option to switch this behaviour of? (%i1) display2d: false;A: matrix([1,2,3],[4,5,6],[7,8,9]);b: matrix([10,11,12]); (%o1) false (%o2) matrix([1,2,3],[4,5,6],[7,8,9]) (%o3) matrix([10,11,12]) (%i4) A.b; (%o4) matrix([68],[167],[266])  Comment By: Barton Willis (willisbl) Date: 20100512 11:49 Message: Maybe you would like to set scalarmatrixp to false: (%i4) matrix([a]) . matrix([b]), scalarmatrixp : false; (%o4) matrix([a*b]) (%i5) matrixp(%); (%o5) true (%i6) matrix([a]) . matrix([b]), scalarmatrixp : true; (%o6) a*b  Comment By: uhlst (uhlst) Date: 20100512 07:52 Message: here again the commands with display2d: false (%i2) display2d: false; (%o2) false (%i3) kill(all); (%o0) done (%i1) a: matrix([1],[2],[3]); (%o1) matrix([1],[2],[3]) (%i2) B: matrix([1,2,3],[4,5,6],[7,8,9]); (%o2) matrix([1,2,3],[4,5,6],[7,8,9]) (%i3) a.B; MULTIPLYMATRICES: attempt to multiply nonconformable matrices.  an error. To debug this try: debugmode(true); (%i4) B.(transpose(a)); (%o4) matrix([14],[32],[50]) (%i5) B.transpose(a); (%o5) matrix([14],[32],[50]) (%i6) B.a; (%o6) matrix([14],[32],[50])  Comment By: uhlst (uhlst) Date: 20100512 07:48 Message: perhaps related is the following "automatic" conversion that maxima does (%i15) kill(all); (%o0) done (%i1) a: matrix([1],[2],[3]); [ 1 ] [ ] (%o1) [ 2 ] [ ] [ 3 ] (%i2) B: matrix([1,2,3],[4,5,6],[7,8,9]); [ 1 2 3 ] [ ] (%o2) [ 4 5 6 ] [ ] [ 7 8 9 ] (%i3) a.B; MULTIPLYMATRICES: attempt to multiply nonconformable matrices.  an error. To debug this try: debugmode(true); (%i4) B.a; [ 14 ] [ ] (%o4) [ 32 ] [ ] [ 50 ] (%i5) B.(transpose(a)); [ 14 ] [ ] (%o5) [ 32 ] [ ] [ 50 ] (%i6) B.transpose(a); [ 14 ] [ ] (%o6) [ 32 ] [ ] [ 50 ] so multiplying a column vector with a square matrix from the left does not work but multiplying a matrix with a row vector from the left works.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3000108&group_id=4933 
From: SourceForge.net <noreply@so...>  20100513 17:25:05

Bugs item #1089719, was opened at 20041222 13:53 Message generated for change (Settings changed) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1089719&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: addrow creates strange matrix Initial Comment: The following commands show problems with addrow: (%i260) m : matrix([0, 0]); (%o260) [ 0 0 ] (%i261) m : addrow(m, m); [ 0 0 ] (%o261) [ ] [ 0 0 ] (%i262) m[1, 1] : 10; (%o262) 10 (%i263) m; [ 10 0 ] (%o263) [ ] [ 10 0 ] i.e. two elements, instead of one are modified! Maxima information: Maxima version: 5.9.1 Maxima build date: 7:34 9/24/2004 host type: i686pcmingw32 lispimplementationtype: Kyoto Common Lisp lispimplementationversion: GCL 2.6.5  Ola Dahl ola.dahl@...  >Comment By: Dieter Kaiser (crategus) Date: 20100513 19:25 Message: Fixed in comm2.lisp revision 1.35. Closing this bug report as fixed. Dieter Kaiser  Comment By: Robert Dodier (robert_dodier) Date: 20060802 06:54 Message: Logged In: YES user_id=501686 The stuff I wrote before, "at present addrow appears to function as intended" is just wishful thinking. This is a bug. Should be easy to fix.  Comment By: Robert Dodier (robert_dodier) Date: 20041231 20:53 Message: Logged In: YES user_id=501686 It appears that addrow copies a reference to the new rows, instead of copying the rows. I would suggest that copying the rows is more generally useful, but at present addrow appears to function as intended. Another example which shows that a change to a row changes the matrix returned by addrow: (%i8) m1:[0,0]; (%o8) [0, 0] (%i9) m2:[0,0]; (%o9) [0, 0] (%i10) m: matrix([0,0]); (%o10) [ 0 0 ] (%i11) n: addrow(m,m1,m2); [ 0 0 ] [ ] (%o11) [ 0 0 ] [ ] [ 0 0 ] (%i12) m1[2]:12; (%o12) 12 (%i13) m2[1]:21; (%o13) 21 (%i14) m; (%o14) [ 0 0 ] (%i15) n; [ 0 0 ] [ ] (%o15) [ 0 12 ] [ ] [ 21 0 ] (%i16) m[1,1]:11; (%o16) 11 (%i17) n; [ 11 0 ] [ ] (%o17) [ 0 12 ] [ ] [ 21 0 ]  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1089719&group_id=4933 
From: SourceForge.net <noreply@so...>  20100513 02:20:37

Bugs item #2989321, was opened at 20100419 12:22 Message generated for change (Comment added) made by sfrobot You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2989321&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None >Status: Closed Resolution: Fixed Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: integrate(rational func) > choses incorrect branch in atan? Initial Comment: integrate((x^4+x^2+4)/(x^67*x^4+14*x^2+1),x,2,2); gives $0.$ >From reading "Improving Exact Integrals From Symbolic Algebra Systems" by Fateman and Kahan, page 5, this should be $2\pi.$  >Comment By: SourceForge Robot (sfrobot) Date: 20100513 02:20 Message: This Tracker item was closed automatically by the system. It was previously set to a Pending status, and the original submitter did not respond within 14 days (the time period specified by the administrator of this Tracker).  Comment By: Raymond Toy (rtoy) Date: 20100429 01:22 Message: The bug in keyhole integration has been fixed. (defint.lisp, rev 1.76) This now returns a noun form. Better than returning 0, but not as good as returning 2*%pi. Setting to pending/fixed.  Comment By: Aleksas Domarkas (alex108) Date: 20100419 20:47 Message: For integrating we define block "int_rac(f,x)": (%i1) int_rac(f,x):=block('integrate(f,x),map(gfactor,%%), ev(%%,nouns),rectform(%%),logcontract(%%))$ 1 example (%i2) integrate((x^4+x^2+4)/(x^67*x^4+14*x^2+1),x); (%o2) integrate((x^4+x^2+4)/(x^67*x^4+14*x^2+1),x) (%i3) f:first(%); (%o3) (x^4+x^2+4)/(x^67*x^4+14*x^2+1) We find antiderivative F : (%i4) F:int_rac(f,x); (%o4) atan2(x^21,x^34*x) Test: (%i5) diff(F,x),ratsimp; (%o5) (x^4+x^2+4)/(x^67*x^4+14*x^2+1) (%i6) limit(F,x,1,minus); (%o6) %pi (%i7) limit(F,x,1,plus); (%o7) %pi Then F is discontinous at x=1. (%i8) wxplot2d([f,F], [x,5,5],[y,5,5])$ (%t8) << Graphics >> Function f is even. Then (%i13) 'integrate(f,x,2,2)=2*(ev(F,x=0)ev(F,x=2)); (%o13) integrate((x^4+x^2+4)/(x^67*x^4+14*x^2+1),x,2,2)=2*%pi 2 example (%i10) S:integrate(1/(x^4+6*x^2+1),x); (%o10) integrate(1/(x^4+6*x^2+1),x) (%i11) sol:int_rac(1/(x^4+6*x^2+1),x); (%o11) (2^(5/2)*atan((2*x)/(x^2+1))+4*atan(x/(sqrt(2)+1))+4*atan(x/(sqrt(2)1)))/2^(9/2) Test: (%i12) diff(%,x),ratsimp; (%o12) 1/(x^4+6*x^2+1)  Comment By: Raymond Toy (rtoy) Date: 20100419 13:37 Message: Maxima converts this integral to an integral from 0 to inf. This new integral is evaluted using resides, and maxima fails to find the roots of the denominator: 9*x^642*x^5+1031*x^41932*x^3+1031*x^242*x+9 Maxima erroneously returns 0 in this case.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2989321&group_id=4933 