You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(70) 
S  M  T  W  T  F  S 



1
(2) 
2
(1) 
3
(5) 
4
(4) 
5
(2) 
6
(5) 
7
(2) 
8

9

10
(12) 
11

12
(3) 
13
(5) 
14

15
(4) 
16
(3) 
17

18
(1) 
19
(7) 
20

21
(3) 
22
(4) 
23
(2) 
24
(2) 
25
(2) 
26
(6) 
27
(2) 
28
(2) 
29
(4) 
30
(2) 



From: SourceForge.net <noreply@so...>  20090906 19:46:21

Bugs item #2846665, was opened at 20090828 22:20 Message generated for change (Settings changed) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2846665&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core Group: None Status: Closed >Resolution: Invalid Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Multiplication of block matrices Initial Comment: a: matrix( [1,2], [3,4] ); b: matrix( [a,a], [a,a] ); c:b.b; gives the output for c matrix([matrix([2,8],[18,32]),matrix([2,8],[18,32])],[matrix([2,8],[18,32]),matrix([2,8],[18,32])]) each element in 'c' is the corresponding element of 'a' squared and then multiplied by 2. I think the result of the multiplication of block matrices should be the same as if the matrices were unblocked.  Maxima version: 5.19.0 Maxima build date: 20:33 8/9/2009 host type: i686pcmingw32 lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.8  Comment By: Barton Willis (willisbl) Date: 20090829 06:06 Message: Maybe you want to set matrix_element_mul to "." (%i6) matrix_element_mul : "."$ (%i7) a: matrix([1,2], [3,4]); b: matrix([a,a],[a,a]); c:b.b; (%o7) matrix([1,2],[3,4]) (%o8) matrix([matrix([1,2],[3,4]),matrix([1,2],[3,4])],[matrix([1,2],[3,4]),matrix([1,2],[3,4])]) (%o9) matrix([matrix([2,8],[18,32]),matrix([2,8],[18,32])],[matrix([2,8],[18,32]),matrix([2,8],[18,32])])  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2846665&group_id=4933 
From: SourceForge.net <noreply@so...>  20090906 19:45:51

Bugs item #2846665, was opened at 20090828 22:20 Message generated for change (Settings changed) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2846665&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core Group: None >Status: Closed Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Multiplication of block matrices Initial Comment: a: matrix( [1,2], [3,4] ); b: matrix( [a,a], [a,a] ); c:b.b; gives the output for c matrix([matrix([2,8],[18,32]),matrix([2,8],[18,32])],[matrix([2,8],[18,32]),matrix([2,8],[18,32])]) each element in 'c' is the corresponding element of 'a' squared and then multiplied by 2. I think the result of the multiplication of block matrices should be the same as if the matrices were unblocked.  Maxima version: 5.19.0 Maxima build date: 20:33 8/9/2009 host type: i686pcmingw32 lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.8  Comment By: Barton Willis (willisbl) Date: 20090829 06:06 Message: Maybe you want to set matrix_element_mul to "." (%i6) matrix_element_mul : "."$ (%i7) a: matrix([1,2], [3,4]); b: matrix([a,a],[a,a]); c:b.b; (%o7) matrix([1,2],[3,4]) (%o8) matrix([matrix([1,2],[3,4]),matrix([1,2],[3,4])],[matrix([1,2],[3,4]),matrix([1,2],[3,4])]) (%o9) matrix([matrix([2,8],[18,32]),matrix([2,8],[18,32])],[matrix([2,8],[18,32]),matrix([2,8],[18,32])])  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2846665&group_id=4933 
From: SourceForge.net <noreply@so...>  20090906 19:43:55

Bugs item #2852326, was opened at 20090905 09:14 Message generated for change (Settings changed) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2852326&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. >Category: Lisp Core Group: None >Status: Pending >Resolution: Invalid Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: tentex and obsolete \pmatrix call Initial Comment: Command "tentex" use obsolete asmtex call for typing of matrix: \pmatrix. (TeX don't compile this) New format is environmet: \begin{pmatrix} ... \end{pmatrix}  >Comment By: Barton Willis (willisbl) Date: 20090906 14:43 Message: If you prefer \begin{pmatrix} ..., use: (%i1) load("mactexutilities")$ (%i2) tex(matrix([1,2],[3,4])); $$\begin{pmatrix}1 & 2 \\ 3 & 4 \\ \end{pmatrix}$$ This is a feature request, not a bug.  Comment By: Nobody/Anonymous (nobody) Date: 20090905 09:16 Message: Sorry, this command is tex() not tentex().  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2852326&group_id=4933 
From: SourceForge.net <noreply@so...>  20090906 15:42:05

Bugs item #2852992, was opened at 20090906 17:42 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2852992&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: sqrt(1/x)%i/sqrt(x) not zero Initial Comment: For any real value sqrt(1/x) should simplify to %i/sqrt(x). We try a positive symbol and get a wrong sign: (%i1) assume(x>0)$ (%i2) sqrt(1/x); (%o2) %i/sqrt(x) This should be zero: (%i3) sqrt(1/x)%i/sqrt(x); (%o3) 2*%i/sqrt(x) For numbers all is correct. We get the expected answers for positive and negative numbers: (%i15) sqrt(1/2)%i/sqrt(2); (%o15) 0 (%i16) sqrt(1/(2))%i/sqrt(2); (%o16) 0 For a general real value we get a wrong simplification too: (%i18) kill(all)$ (%i1) expr:sqrt(1/x)%i/sqrt(x); (%o1) 1/sqrt(x)%i/sqrt(x) The expression is wrongly simplified. We should get zero for positive and negative numbers: (%i2) expr,x=2; (%o2) sqrt(2)*%i (%i3) expr,x=2; (%o3) 0 This bug is related to the bug ID: 1010768 "sqrt(1/z)  1/sqrt(z) => 0". Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2852992&group_id=4933 
From: SourceForge.net <noreply@so...>  20090906 13:18:53

Bugs item #2848682, was opened at 20090901 21:51 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2848682&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Assume Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: abs(log(1)) > log(1) Initial Comment: Maxima always simplifies abs(log(x)) to log(x) if x<1: (%i38) assume(x<0)$ (%i39) abs(log(x)); (%o39) log(x) This happens for negative numbers too: (%i40) abs(log(1)); (%o40) log(1) As a consequence the absolute value of e.g. log(1) is imaginary: (%i45) rectform(abs(log(1))); (%o45) %i*%pi This is the correct result: (%i46) abs(rectform(log(1))); (%o46) %pi The reason is that for every argument x<1 the function sign returns neg. (%i42) sign(log(x)); (%o42) neg But this is true only for 0 < x < 1. For x<0 sign should return pnz. This could be a correction to the routine sign in compar.lisp: ((eq (caar x) '%log) ;; Return a negative or positive sign only when the argument ;; is a real positive value in all other cases '$pnz. (cond ((eq (setq sign (compare (cadr x) 0)) '$neg) ;; Negative argument. (setq sign '$pnz)) (t ;; Positive argument to the Log function. ;; Check argument < 1 or > 1. (compare (cadr x) 1)))) Dieter Kaiser  >Comment By: Dieter Kaiser (crategus) Date: 20090906 15:18 Message: The suggested change has been committed in compar.lisp revision 1.53. Because of two changes in limit.lisp revision1.79 for the abs und log function the limit(abs(log(x)),x,0) works as expected too. Closing this bug report as fixed. Dieter Kaiser  Comment By: Dieter Kaiser (crategus) Date: 20090901 22:59 Message: Remark: When we improve the routine sign for the log function, we get one error with the testsuite: Running tests in rtest16: ********************** Problem 112 *************** Input: limit(abs(log(x)), x, 0) Result: 'limit(abs(log(x)),x,0) This differed from the expected result: inf We get again the expected limit, when we improve the limit for the absolute value too. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2848682&group_id=4933 