You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(4) 
_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 



1
(2) 
2
(1) 
3
(5) 
4
(4) 
5
(2) 
6
(5) 
7
(2) 
8

9

10
(12) 
11

12
(3) 
13
(5) 
14

15
(4) 
16
(3) 
17

18
(1) 
19
(7) 
20

21
(3) 
22
(4) 
23
(2) 
24
(2) 
25
(2) 
26
(6) 
27
(2) 
28
(2) 
29
(4) 
30
(2) 



From: SourceForge.net <noreply@so...>  20090913 22:14:36

Bugs item #2858243, was opened at 20090913 22:13 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2858243&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: specint(exp(s*t)*t^n*exp(sqrt(t)),t) > Lisp Error Initial Comment: For a symbol declared to be an integer we get a Lisp error for the following integral: (%i6) declare(n,integer)$ (%i7) assume(s>0,n>0)$ (%i8) specint(exp(s*t)*t^n*exp(sqrt(t)),t); Maxima encountered a Lisp error: MINUSP: #1=((MPLUS SIMP) 1 $N) is not a real number Automatically continuing. To enable the Lisp debugger set *debuggerhook* to nil. The problem is that we test with maximaintegerp, but later in the algorithm we do not take into account symbols and expressions. Dieter Kaiser  >Comment By: Dieter Kaiser (crategus) Date: 20090914 00:14 Message: Fixed in revision 1.59 in hypgeo.lisp. The routine neginp is improved. Now we get: (%i2) declare(n,integer)$ (%i3) assume(s>0,n>0)$ (%i5) specint(exp(s*t+sqrt(t))*t^n,t); (%o5) gamma(2*n+2)*s^(n1) *(sqrt(%pi)*2^((2*(n+1)1)/2+1/2) *%f[1,1]([n+3/2],[3/2],1/(4*s))*%e^(1/(8*s)) /(gamma(n+1)*sqrt(s)) +sqrt(%pi)*2^(n1)*%f[1,1]([n+1],[1/2],1/(4*s)) *%e^(1/(8*s)) /gamma(n+3/2))*%e^(1/(8*s)) /2^n Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2858243&group_id=4933 
From: SourceForge.net <noreply@so...>  20090913 20:13:53

Bugs item #2858243, was opened at 20090913 22:13 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2858243&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: specint(exp(s*t)*t^n*exp(sqrt(t)),t) > Lisp Error Initial Comment: For a symbol declared to be an integer we get a Lisp error for the following integral: (%i6) declare(n,integer)$ (%i7) assume(s>0,n>0)$ (%i8) specint(exp(s*t)*t^n*exp(sqrt(t)),t); Maxima encountered a Lisp error: MINUSP: #1=((MPLUS SIMP) 1 $N) is not a real number Automatically continuing. To enable the Lisp debugger set *debuggerhook* to nil. The problem is that we test with maximaintegerp, but later in the algorithm we do not take into account symbols and expressions. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2858243&group_id=4933 
From: SourceForge.net <noreply@so...>  20090913 20:06:43

Bugs item #2858045, was opened at 20090913 15:23 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2858045&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: Laplace transform of asin or atan gives wrong noun form Initial Comment: The routine $specint does not give the correct noun forms for integrands with the asin or atan function. (%i2) assume(s>0)$ In the results the function is missing: (%i5) specint(exp(s*t)*asin(t),t); (%o5) ?%specint(%e^(s*t),t) (%i6) specint(exp(s*t)*atan(t),t); (%o6) ?%specint(%e^(s*t),t) If we look at the algorithm of the Laplace transform for the hypergeometric function, we can expect a result for both functions when the argument is 1/sqrt(t). But we do not get a result. The noun form is wrong too. (%i7) specint(exp(s*t)*asin(1/sqrt(t)),t); (%o7) ?%specint(%e^(s*t),t) (%i8) specint(exp(s*t)*atan(1/sqrt(t)),t); (%o8) ?%specint(%e^(s*t),t) We can improve the implementation of asin and atan and get the following results (this time I have used the function laplace, which calls $specint): (%i12) laplace(asin(1/sqrt(t)),t,s); (%o12) sqrt(%pi)*%f[3,1]([1/2,1/2,1/2],[3/2],s)/sqrt(s) (%i13) laplace(atan(1/sqrt(t)),t,s); (%o13) sqrt(%pi)*%f[3,1]([1/2,1,1/2],[3/2],s)/sqrt(s) Dieter Kaiser  >Comment By: Dieter Kaiser (crategus) Date: 20090913 22:06 Message: Fixed in revision 1.57 of hypgeo.lisp. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2858045&group_id=4933 
From: SourceForge.net <noreply@so...>  20090913 13:23:24

Bugs item #2858045, was opened at 20090913 15:23 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2858045&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: Laplace transform of asin or atan gives wrong noun form Initial Comment: The routine $specint does not give the correct noun forms for integrands with the asin or atan function. (%i2) assume(s>0)$ In the results the function is missing: (%i5) specint(exp(s*t)*asin(t),t); (%o5) ?%specint(%e^(s*t),t) (%i6) specint(exp(s*t)*atan(t),t); (%o6) ?%specint(%e^(s*t),t) If we look at the algorithm of the Laplace transform for the hypergeometric function, we can expect a result for both functions when the argument is 1/sqrt(t). But we do not get a result. The noun form is wrong too. (%i7) specint(exp(s*t)*asin(1/sqrt(t)),t); (%o7) ?%specint(%e^(s*t),t) (%i8) specint(exp(s*t)*atan(1/sqrt(t)),t); (%o8) ?%specint(%e^(s*t),t) We can improve the implementation of asin and atan and get the following results (this time I have used the function laplace, which calls $specint): (%i12) laplace(asin(1/sqrt(t)),t,s); (%o12) sqrt(%pi)*%f[3,1]([1/2,1/2,1/2],[3/2],s)/sqrt(s) (%i13) laplace(atan(1/sqrt(t)),t,s); (%o13) sqrt(%pi)*%f[3,1]([1/2,1,1/2],[3/2],s)/sqrt(s) Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2858045&group_id=4933 
From: SourceForge.net <noreply@so...>  20090913 00:04:46

Bugs item #2857799, was opened at 20090913 00:04 Message generated for change (Tracker Item Submitted) made by nobody You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2857799&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: to_poly_solve gives too many solutions Initial Comment: Instead of as in Maxima 5.16.3, where we correctly get: to_poly_solve(Q*sqrt(Q^2+2)1,Q); [Q=1/sqrt(sqrt(2)+1), Q=1/sqrt((sqrt(2)+1)] in 5.19.1, we get the 1 versions, but: a:1/sqrt(sqrt(2)+1); b:bfloat(a); b*sqrt(b^2+2)1; 2.0b0 so presumably the negative ones are spurious.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2857799&group_id=4933 