You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(15) 
_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 




1
(6) 
2
(2) 
3

4

5

6

7
(6) 
8
(2) 
9

10
(1) 
11
(1) 
12
(3) 
13
(1) 
14
(8) 
15
(3) 
16
(5) 
17
(1) 
18

19

20
(2) 
21
(6) 
22
(3) 
23
(1) 
24
(1) 
25
(5) 
26
(5) 
27

28
(3) 
29

30

31
(2) 

From: SourceForge.net <noreply@so...>  20090721 22:45:27

Bugs item #2825092, was opened at 20090722 00:45 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2825092&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: %pi^2.0b0 does not evaluate numerically Initial Comment: Maxima evaluates numeric constants numerically, if the exponent is a floating point number or $numer is T: (%i3) %pi^2.0; (%o3) 9.869604401089358 (%i4) %gamma^2.0; (%o4) .3331779238077187 (%i5) %pi^2,numer; (%o5) 9.869604401089358 (%i6) %gamma^2,numer; (%o6) .3331779238077187 But it does not work if the exponent is a bigfloat number (only %e works): (%i9) %pi^2.0b0; (%o9) %pi^2.0b0 (%i10) %gamma^2.0b0; (%o10) %gamma^2.0b0 This is a piece of code in simpexpt, which will change this: (t (let ((y (mget gr '$numer))) ;; Check for a numeric constant. (and y (floatp y) (or (floatp pot) ;; The exponent is a bigfloat. Convert base to bigfloat. (and ($bfloatp pot) (member gr *builtinnumericconstants*) (setq y ($bfloat gr))) (and $numer (integerp pot))) ;; The evaluation is done in exprtl. (return (exptrl y pot)))))) (%i12) %pi^2.0b0; (%o12) 9.869604401089359b0 (%i13) %gamma^2.0b0; (%o13) 3.331779238077187b1 Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2825092&group_id=4933 
From: SourceForge.net <noreply@so...>  20090721 22:20:06

Bugs item #2825082, was opened at 20090722 00:20 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2825082&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: %pi^1.0b0 > floating point value Initial Comment: The exponent is a bigfloat number, but a floating point number is returned: (%i16) %pi^1.0b0; (%o16) 3.141592653589793 (%i17) %gamma^1.0b0; (%o17) .5772156649015329 The only case which is handled correctly is %e: (%i18) %e^1.0b0; (%o18) 2.718281828459045b0 That is the piece of code in simpexpt, which can handle the other numeric constants too: ((onep1 pot) ;; Exponent is One. (let ((y (mget gr '$numer))) (if (and y (floatp y) (or $numer (not (equal pot 1)))) ;; Base is a numeric constant with a floating point value or ;; $numer is TRUE and the Exponent is not the integer One. (return (if (and (member gr *builtinnumericconstants*) (equal pot bigfloatone)) ;; Convert numeric constant to bigfloat value. ($bfloat gr) ;; Can we reach this point? y)) ;; Handle other cases in exptrl. (return (exptrl gr pot))))) We get: (%i16) %pi^1.0b0; (%o16) 3.141592653589793b0 (%i17) %gamma^1.0b0; (%o17) 5.772156649015329b1 (%i18) %phi^1.0b0; (%o18) 1.618033988749895b0 Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2825082&group_id=4933 
From: SourceForge.net <noreply@so...>  20090721 18:17:01

Bugs item #2824928, was opened at 20090721 20:17 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2824928&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Limit Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: limit(sqrt(z)/b^z,z,inf) Initial Comment: The following limit is not correct for b>1 and b<=0; (%i1) limit(sqrt(z)/b^z,z,inf); (%o1) inf Maxima knows the correct answer for b>1: (%i10) assume(b>1)$ (%i11) limit(sqrt(z)/b^z,z,inf); (%o11) 0 Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2824928&group_id=4933 
From: SourceForge.net <noreply@so...>  20090721 17:26:47

Bugs item #2824909, was opened at 20090721 19:19 Message generated for change (Settings changed) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2824909&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) >Summary: exp(%i*%pi/4) not simplified Initial Comment: The following expression is not fully simplified: (%i3) exp(%i*%pi/4); (%o3) %i/sqrt(2)+sqrt(2)/2 We have to do an extra simplification: (%i4) expand(%,0,0); (%o4) %i/sqrt(2)+1/sqrt(2) The reason is, that the routine spang1 in csimp.lisp returns the value of the global special variable sqrt2//2. The value is not correctly simplified by hand: (%i5) :lisp sqrt2//2 ((MTIMES SIMP) ((RAT SIMP) 1 2) ((MEXPT SIMP) 2 ((RAT SIMP) 1 2))) We have the same problem with the variable sqrt2//2 (%i5) :lisp sqrt2//2 ((MTIMES SIMP) ((RAT SIMP) 1 2) ((MEXPT SIMP) 2 ((RAT SIMP) 1 2))) There are two solutions: 1. Correct the value of the global variables. 2. Do not use the global variables, but use code which simplifies accordingly, e.g. sqrt2//2 > (div 1 ($sqrt 2)) The global variables sqrt2//2, sqrt//2, sqrt3//2, sqrt3//2 are definied in trigi.lisp. All variables are used only one time in csimp.lisp. I think it is the best to cut out these four variables and to insert the code directly in the routine spang1. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2824909&group_id=4933 
From: SourceForge.net <noreply@so...>  20090721 17:19:16

Bugs item #2824909, was opened at 20090721 19:19 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2824909&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: exp(%i*%pi/4 not simplified Initial Comment: The following expression is not fully simplified: (%i3) exp(%i*%pi/4); (%o3) %i/sqrt(2)+sqrt(2)/2 We have to do an extra simplification: (%i4) expand(%,0,0); (%o4) %i/sqrt(2)+1/sqrt(2) The reason is, that the routine spang1 in csimp.lisp returns the value of the global special variable sqrt2//2. The value is not correctly simplified by hand: (%i5) :lisp sqrt2//2 ((MTIMES SIMP) ((RAT SIMP) 1 2) ((MEXPT SIMP) 2 ((RAT SIMP) 1 2))) We have the same problem with the variable sqrt2//2 (%i5) :lisp sqrt2//2 ((MTIMES SIMP) ((RAT SIMP) 1 2) ((MEXPT SIMP) 2 ((RAT SIMP) 1 2))) There are two solutions: 1. Correct the value of the global variables. 2. Do not use the global variables, but use code which simplifies accordingly, e.g. sqrt2//2 > (div 1 ($sqrt 2)) The global variables sqrt2//2, sqrt//2, sqrt3//2, sqrt3//2 are definied in trigi.lisp. All variables are used only one time in csimp.lisp. I think it is the best to cut out these four variables and to insert the code directly in the routine spang1. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2824909&group_id=4933 
From: SourceForge.net <noreply@so...>  20090721 01:24:35

Bugs item #2824047, was opened at 20090719 20:01 Message generated for change (Settings changed) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2824047&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: sum(x,x,a,0); wrong Initial Comment: Summary: sum(...,x,a,0) is wrong when the first argument is a polynomial in x, a is unbound, and you respond to "Is a positive, negative, or zero?" with positive. Example: (%i1) sum(x,x,a,0); p; (%o1) (a^2a)/2 The result should be (a^2+a)/2. Negative numeric limits work fine: (%i1) sum(x,x,5,0); (%o1) 15 Evaluating the incorrect result of (%i1): (%i2) subst(5,a,%o1); (%o2) 10 Evaluating the correct formula: (%i3) (5^2+5)/2; (%o3) 15 Maxima version: 5.13.0 Maxima build date: 9:20 12/12/2007 host type: i686pclinuxgnu lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.8  >Comment By: Barton Willis (willisbl) Date: 20090720 20:21 Message: Thanks for the bug report. This bug was fixed just recently: (%i1) display2d : false$ (%i2) sum(x,x,a,0),simpsum$ (%i3) factor(%); (%o3) a*(a+1)/2 (%i4) build_info(); Maxima version: 5.18post Maxima build date: 16:1 7/8/2009 host type: i686pcmingw32 lispimplementationtype: Clozure Common Lisp lispimplementationversion: Version 1.4dev (WindowsX8632)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2824047&group_id=4933 