You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(3) 
_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 





1
(4) 
2
(4) 
3
(10) 
4
(13) 
5
(1) 
6
(4) 
7
(2) 
8
(4) 
9
(1) 
10
(3) 
11
(1) 
12
(7) 
13
(6) 
14
(4) 
15
(7) 
16
(2) 
17
(5) 
18

19
(3) 
20

21
(2) 
22

23

24

25
(14) 
26

27
(4) 
28
(2) 
29

30

31

From: SourceForge.net <noreply@so...>  20090121 22:10:09

Bugs item #2527002, was opened at 20090121 15:15 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2527002&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Share Libraries Group: None >Status: Pending >Resolution: Fixed Priority: 5 Private: No Submitted By: Robert Dodier (robert_dodier) Assigned to: Barton Willis (willisbl) Summary: to_poly fails on 2*x3 = (2 + sqrt(x+7))^2 Initial Comment: load (topoly); to_poly (2*x  3 = (2 + sqrt(x + 7))^2, [x]); => [[(sqrt(x+7)+2)^2+2*x3],[]] to_poly didn't remove the sqrt. But with a little encouragement: to_poly (sqrt(2*x  3) = 2 + sqrt(x + 7), [x]); => [[%g2%g12,2*x3 = %g2^2,x+7 = %g1^2], [%pi/2 < carg(%g2),carg(%g2) <= %pi/2,%pi/2 < carg(%g1), carg(%g1) <= %pi/2]]$ load (topoly_solver); to_poly_solve (sqrt(2*x  3) = 2 + sqrt(x + 7), [x]); => [[x = 42]]  >Comment By: Barton Willis (willisbl) Date: 20090121 15:38 Message: I think this is fixed in CVS: (%i6) to_poly (2*x  3 = (2 + sqrt(x + 7))^2, [x]); (%o6) [[x4*%g414,x+7 = %g4^2],[%pi/2 < parg(%g4),parg(%g4) <= %pi/2],[]] (%i7) load("to_poly_solver"); " (%i8) to_poly_solve (sqrt(2*x  3) = 2 + sqrt(x + 7), [x]); (%o8) %union([x = 42]) Let me know if it doesn't work for you. Thanks for the bug report. (There is some new user documentation for topoly & friends).  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2527002&group_id=4933 
From: SourceForge.net <noreply@so...>  20090121 21:15:54

Bugs item #2527002, was opened at 20090121 14:15 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2527002&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Share Libraries Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Robert Dodier (robert_dodier) Assigned to: Barton Willis (willisbl) Summary: to_poly fails on 2*x3 = (2 + sqrt(x+7))^2 Initial Comment: load (topoly); to_poly (2*x  3 = (2 + sqrt(x + 7))^2, [x]); => [[(sqrt(x+7)+2)^2+2*x3],[]] to_poly didn't remove the sqrt. But with a little encouragement: to_poly (sqrt(2*x  3) = 2 + sqrt(x + 7), [x]); => [[%g2%g12,2*x3 = %g2^2,x+7 = %g1^2], [%pi/2 < carg(%g2),carg(%g2) <= %pi/2,%pi/2 < carg(%g1), carg(%g1) <= %pi/2]]$ load (topoly_solver); to_poly_solve (sqrt(2*x  3) = 2 + sqrt(x + 7), [x]); => [[x = 42]]  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2527002&group_id=4933 