You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(7) 
_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1

2

3

4
(4) 
5

6
(2) 
7
(2) 
8
(3) 
9
(1) 
10

11

12

13
(2) 
14

15
(1) 
16
(7) 
17
(1) 
18
(1) 
19

20

21

22

23

24
(1) 
25
(2) 
26
(5) 
27
(1) 
28
(1) 
29
(4) 
30
(6) 






From: SourceForge.net <noreply@so...>  20081108 19:52:03

Bugs item #2243836, was opened at 20081108 20:52 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2243836&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Differential eqns Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Rüdiger Sonderfeld (kingruedi) Assigned to: Nobody/Anonymous (nobody) Summary: desolve fails to solve diffeqn. Initial Comment: I tried to solve two diffeqns with a boundary condition. But desolve fails to correctly laplace transform the eqn. Maxima 5.16post http://maxima.sourceforge.net Using Lisp SBCL 1.0.18.debian Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%i1) assume(a > 0); (%o1) [a > 0] (%i2) assume(b > 0); (%o2) [b > 0] (%i3) assume(x20 > 0); (%o3) [x20 > 0] (%i4) 'diff(x1(t), t) = x1(t) + 1/2; d 1 (%o4)  (x1(t)) =   x1(t) dt 2 (%i5) 'diff(x2(t), t) = a*x1(t)*sqrt(b*x2(t)); d (%o5)  (x2(t)) =  a sqrt(b) x1(t) sqrt(x2(t)) dt (%i6) atvalue(x1(t), t=0, 0); (%o6) 0 (%i7) atvalue(x2(t), t=0, x20); (%o7) x20 (%i8) desolve([%o4, %o5], [x1(t), x2(t)]);  t 1 %e (%o8) [x1(t) =   , x2(t) = 2 2 x20  a sqrt(b) laplace(x1(t) sqrt(x2(t)), t, false) ilt(, false, t)] false 5.13.0 behaves similar (%i8) desolve([%o4, %o5], [x1(t), x2(t)]);  t 1 %e (%o8) [x1(t) =   , x2(t) = 2 2 x20  a sqrt(b) laplace(x1(t) sqrt(x2(t)), t, lvar) ilt(, lvar, t)] lvar  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2243836&group_id=4933 
From: SourceForge.net <noreply@so...>  20081108 09:21:56

Bugs item #2236782, was opened at 20081107 22:30 Message generated for change (Settings changed) made by andrejv You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2236782&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Share Libraries Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Alexey Beshenov (beshenov) Assigned to: Andrej Vodopivec (andrejv) Summary: simplify_sum gives a wrong answer for unsimplified terms Initial Comment: Here simplify_sum gives a wrong answer: (%i1) load ("simplify_sum")$ (%i2) kth_term : 1/(2*k)+1/(2*2*k+1)+1/(2*2*k+3)$ (%i3) simplify_sum(sum(kth_term,k,1,inf)); (%o3) inf However, it gives the right answer for the ratsimp'ed term. (%i4) simplify_sum(sum(ratsimp(kth_term),k,1,inf)); (%o4) (3*log(2)+%pi/2%gamma+4/3)/4(3*log(2)%pi/2%gamma+4)/4%gamma/2 (%i5) ratsimp(4/3+%); (%o5) 3*log(2)/2  Comment By: Andrej Vodopivec (andrejv) Date: 20081108 10:21 Message: With maxima from cvs I get (%i1) load(simplify_sum)$ (%i2) kth_term : 1/(2*k)+1/(2*2*k+1)+1/(2*2*k+3)$ (%i3) simplify_sum(sum(kth_term,k,1,inf)); (%o3) (9*log(2)8)/6 (%i4) simplify_sum(sum(ratsimp(kth_term),k,1,inf)); (%o4) (9*log(2)8)/6 (%i5) (3*log(2)+%pi/2%gamma+4/3)/4(3*log(2)%pi/2%gamma+4)/4%gamma/2$ (%i6) ratsimp(%o4%o5); (%o6) 0 (%i7) build_info()$ Maxima version: 5.16post Maxima build date: 13:6 11/7/2008 host type: i386appledarwin9.5.0 lispimplementationtype: CMU Common Lisp lispimplementationversion: Stage 3 20071107T024924 (19D) I'm closing this as fixed. Andrej  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2236782&group_id=4933 
From: SourceForge.net <noreply@so...>  20081108 09:21:50

Bugs item #2236782, was opened at 20081107 22:30 Message generated for change (Comment added) made by andrejv You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2236782&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Share Libraries Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Alexey Beshenov (beshenov) Assigned to: Andrej Vodopivec (andrejv) Summary: simplify_sum gives a wrong answer for unsimplified terms Initial Comment: Here simplify_sum gives a wrong answer: (%i1) load ("simplify_sum")$ (%i2) kth_term : 1/(2*k)+1/(2*2*k+1)+1/(2*2*k+3)$ (%i3) simplify_sum(sum(kth_term,k,1,inf)); (%o3) inf However, it gives the right answer for the ratsimp'ed term. (%i4) simplify_sum(sum(ratsimp(kth_term),k,1,inf)); (%o4) (3*log(2)+%pi/2%gamma+4/3)/4(3*log(2)%pi/2%gamma+4)/4%gamma/2 (%i5) ratsimp(4/3+%); (%o5) 3*log(2)/2  Comment By: Andrej Vodopivec (andrejv) Date: 20081108 10:21 Message: With maxima from cvs I get (%i1) load(simplify_sum)$ (%i2) kth_term : 1/(2*k)+1/(2*2*k+1)+1/(2*2*k+3)$ (%i3) simplify_sum(sum(kth_term,k,1,inf)); (%o3) (9*log(2)8)/6 (%i4) simplify_sum(sum(ratsimp(kth_term),k,1,inf)); (%o4) (9*log(2)8)/6 (%i5) (3*log(2)+%pi/2%gamma+4/3)/4(3*log(2)%pi/2%gamma+4)/4%gamma/2$ (%i6) ratsimp(%o4%o5); (%o6) 0 (%i7) build_info()$ Maxima version: 5.16post Maxima build date: 13:6 11/7/2008 host type: i386appledarwin9.5.0 lispimplementationtype: CMU Common Lisp lispimplementationversion: Stage 3 20071107T024924 (19D) I'm closing this as fixed. Andrej  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2236782&group_id=4933 