You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(8) 
_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 

1
(3) 
2
(6) 
3
(3) 
4
(2) 
5
(2) 
6
(6) 
7
(2) 
8

9
(1) 
10
(1) 
11
(2) 
12

13
(1) 
14
(2) 
15
(17) 
16
(5) 
17
(2) 
18
(4) 
19

20
(1) 
21

22
(22) 
23
(5) 
24

25

26
(1) 
27

28
(4) 
29
(1) 
30






From: SourceForge.net <noreply@so...>  20080611 08:32:48

Bugs item #1990595, was opened at 20080611 01:32 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1990595&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Bug in radcan Initial Comment: Maxima version: 5.15.0 Maxima build date: 17:36 4/20/2008 host type: i686pcmingw32 lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.8  The above information is also available from the Maxima function build_info(). (%o2) (%i3) sqrt(x^2+x^3); 3 2 (%o3) sqrt(x + x ) (%i4) factor(sqrt(x^2+x^3)); (%o4) sqrt(x + 1) abs(x) (%i5) radcan(sqrt(x^2+x^3)); (%o5) x sqrt(x + 1) (%i6) While factor got this right radcan yields a incorrect result.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1990595&group_id=4933 
From: SourceForge.net <noreply@so...>  20080611 06:50:32

Bugs item #1981623, was opened at 20080602 12:39 Message generated for change (Comment added) made by satoshi_adachi You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1981623&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Satoshi Adachi (satoshi_adachi) Assigned to: Nobody/Anonymous (nobody) Summary: wrong sign of sqrt() Initial Comment: Dear Developers of Maxima, I found that sqrt() returns the incorrect expression that has the sign opposite to the ture expression when some certain argument is given to sqrt(). Namely, sqrt() interprets incorrectly the database that is prepared by assume(). Here is an demonstration program:  /* * wrong_sign_of_sqrt.maxima * * S.Adachi 2008/06/01 */ display2d:false; assume(x >= 0, x <= 1); correct_result_1:sqrt((x1)^2); correct_result_2:sqrt(1/(x1)^2); correct_result_3:sqrt(a*(x1)^2); incorrect_result_1:sqrt(a/(x1)^2); incorrect_result_2:sqrt(a^2/(x1)^2); incorrect_result_3:sqrt(x^2/(x1)^2); /* END */  The result of execution is as follows:  Maxima 5.14.0cvs http://maxima.sourceforge.net Using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (aka GCL) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%i1) batch(wrong_sign_of_sqrt.maxima) batching #p/Volumes/HFS+2/home/adachi/work/299/wrong_sign_of_sqrt.maxima (%i2) display2d : false (%o2) false (%i3) assume(x >= 0,x <= 1) (%o3) [x >= 0,x <= 1] (%i4) correct_result_1:sqrt((x1)^2) (%o4) 1x (%i5) correct_result_2:sqrt(1/(x1)^2) (%o5) 1/(1x) (%i6) correct_result_3:sqrt(a*(x1)^2) (%o6) sqrt(a)*(1x) (%i7) incorrect_result_1:sqrt(a/(x1)^2) (%o7) sqrt(a)/(x1) (%i8) incorrect_result_2:sqrt(a^2/(x1)^2) (%o8) abs(a)/(x1) (%i9) incorrect_result_3:sqrt(x^2/(x1)^2) (%o9) x/(x1) (%o10) "wrong_sign_of_sqrt.maxima"  I wonder why sqrt() returns the wrong expression if sqrt((x1)^2) appears in the denominator of some fraction in the argument that is more complex than some threshold (e.g. the numerator is not a simple number or something like that). I think that this is a very severe bug of sqrt() and the database that is prepared by assume(). This bug puts many user programs to the state producing many wrong results. Please fix this severe bug. Sincerely yours, Satoshi Adachi  >Comment By: Satoshi Adachi (satoshi_adachi) Date: 20080611 15:50 Message: Logged In: YES user_id=1953419 Originator: YES Thank you for your suggestion. But, your suggestion just forbids Maxima to simplify certain expressions in order not to produce wrong results. Is someone trying to fix this bug now? If not yet, I will read lisp source code in some future (maybe, several months later) to try to fix the problem...  Comment By: Barton Willis (willisbl) Date: 20080604 20:20 Message: Logged In: YES user_id=895922 Originator: NO As a workaround, you might try setting radexpand to false: (%i1) assume(0 < x, x <= 1)$ (%i2) sqrt(a/(x1)^2); (%o2) sqrt(a)/(x1) (%i3) sqrt(a/(x1)^2), radexpand : false; (%o3) sqrt(a/(x1)^2)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1981623&group_id=4933 