You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(21) 
_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 





1
(6) 
2
(10) 
3

4
(3) 
5
(5) 
6

7
(5) 
8
(3) 
9
(3) 
10
(3) 
11

12
(1) 
13
(1) 
14
(8) 
15
(8) 
16
(3) 
17
(5) 
18

19

20

21

22
(1) 
23

24
(2) 
25
(2) 
26
(2) 
27

28
(1) 
29
(2) 
30

31
(3) 
From: SourceForge.net <noreply@so...>  20080501 13:06:22

Bugs item #1955272, was opened at 20080501 02:14 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1955272&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Floating point Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: fpprec does not reflect actual output prec Initial Comment: The following batch file which calculates pi (using a very inefficient algorithm), does not show the correct fp precision on output. I'm comparing the output (iteration number 39) with the same algorithm using Mathematica. Increasing fpprec solves the problem, but the actual precision of the calculation is not fpprec. Maxima batch file: ==================================================== fpprec: 30$ L_0: 2$ k: 2$ el(x) := sqrt(22*sqrt(1x^2/4))$ L_old: L_0$ for i: 2 thru 39 do (k:k*2, L_new: el(L_old), cr:k*L_new/2, print("(",i,") ",bfloat(cr)), L_old:L_new)$ ==================================================== Maxima output: (39) 3.14159265480758935938754019422 Mathematica output: (39) 3.14159265358979323846262628475 If I increase fpprec in Maxima (to 50 in this case), it gives the correct answer: (39) 3.14159265358979323846262628475 I assume the preferred behavior is to have Maxima output at fpprec. Eric ehmajzo@...  >Comment By: Raymond Toy (rtoy) Date: 20080501 09:06 Message: Logged In: YES user_id=28849 Originator: NO What does "output at fpprec" mean? fpprec in Maxima means that all bfloat operations will use fpprec digits in the calculations. Note that el(x) has significant roundoff issues as x becomes small. sqrt(1x^2/4) is not very accurate for small x. For small x sqrt(1x^2/4) is approximately 1, and then we essentially subtract that from 1, incurring even more roundoff. But, L_old starts as an exact integer, so, in fact, all intermediate calculations are done exactly. Then we compute bfloat(cr), which may not necessarily be the best way to compute the result. The symbolic expression does not take into consideration roundoff issues. I don't think this is a problem with maxima or the computations.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1955272&group_id=4933 
From: SourceForge.net <noreply@so...>  20080501 06:14:05

Bugs item #1955272, was opened at 20080430 23:14 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1955272&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Floating point Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: fpprec does not reflect actual output prec Initial Comment: The following batch file which calculates pi (using a very inefficient algorithm), does not show the correct fp precision on output. I'm comparing the output (iteration number 39) with the same algorithm using Mathematica. Increasing fpprec solves the problem, but the actual precision of the calculation is not fpprec. Maxima batch file: ==================================================== fpprec: 30$ L_0: 2$ k: 2$ el(x) := sqrt(22*sqrt(1x^2/4))$ L_old: L_0$ for i: 2 thru 39 do (k:k*2, L_new: el(L_old), cr:k*L_new/2, print("(",i,") ",bfloat(cr)), L_old:L_new)$ ==================================================== Maxima output: (39) 3.14159265480758935938754019422 Mathematica output: (39) 3.14159265358979323846262628475 If I increase fpprec in Maxima (to 50 in this case), it gives the correct answer: (39) 3.14159265358979323846262628475 I assume the preferred behavior is to have Maxima output at fpprec. Eric ehmajzo@...  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1955272&group_id=4933 