You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(17) 
_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 

1

2

3
(10) 
4
(1) 
5
(3) 
6
(1) 
7

8
(1) 
9

10

11
(1) 
12
(6) 
13
(4) 
14
(6) 
15

16
(1) 
17
(8) 
18
(4) 
19
(6) 
20
(3) 
21
(3) 
22
(1) 
23
(3) 
24

25
(1) 
26

27

28

29
(3) 
30

31
(6) 




From: SourceForge.net <noreply@so...>  20070723 12:39:24

Bugs item #1758004, was opened at 20070721 07:10 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1758004&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: integration needs %piargs : true Initial Comment: OK: (%i1) integrate(1/(1+sin(x)^2),x,0,2*%pi), %piargs : true; (%o1) sqrt(2)*%pi Not OK when %piargs : false (%i2) integrate(1/(1+sin(x)^2),x,0,2*%pi), %piargs : false; (%o2) (sqrt(2)*atan(sqrt(2)*tan(2*%pi)))/2(sqrt(2)*atan(sqrt(2)*tan(0)))/2 (%i3) ''%; (%o3) 0  >Comment By: Dan Gildea (dgildea) Date: 20070723 08:39 Message: Logged In: YES user_id=1797506 Originator: NO see also 1741705  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1758004&group_id=4933 
From: SourceForge.net <noreply@so...>  20070723 12:36:34

Bugs item #1730044, was opened at 20070602 16:01 Message generated for change (Settings changed) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1730044&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core Group: None >Status: Closed Resolution: Fixed Priority: 5 Private: No Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: powerseries(1+x^n,x,0) wrong Initial Comment: powerseries(1+x^n,x,0) => 'sum((1)^i1*x^(i1*n),i1,0,inf) but this is actually the series for 1/(1+x^n) Conversely, powerseries(1/(1+x^n),x,0) => Unable to expand This might be a simple mixup somewhere in the code.... Maxima 5.11.0 GCL 2.6.8 Cygwin  Comment By: Dan Gildea (dgildea) Date: 20070718 06:34 Message: Logged In: YES user_id=1797506 Originator: NO sign problem fixed in series.lisp rev 1.13. new behavior: (%i2) powerseries(1+x^n,x,0); (%o2) ('sum(x^(i1*n)/beta(2i1,i1+1),i1,0,inf))/2 (%i3) powerseries(1/(1+x^n),x,0); (%o3) "Unable to expand" (%i4) declare(n, integer); (%o4) done (%i5) powerseries(1+x^n,x,0); (%o5) ('sum(x^(i3*n)/beta(2i3,i3+1),i3,0,inf))/2 (%i6) powerseries(1/(1+x^n),x,0); (%o6) 'sum((1)^i4*x^(i4*n),i4,0,inf) I suppose ideally %o6 should only happen in n is known to be a positive integer.  Comment By: Dan Gildea (dgildea) Date: 20070718 06:34 Message: Logged In: YES user_id=1797506 Originator: NO The reported bug is not present in the current cvs version of Maxima. Thank you for your report. If you see this bug in a later version of Maxima, please submit a new bug report.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1730044&group_id=4933 
From: SourceForge.net <noreply@so...>  20070723 12:31:21

Bugs item #831445, was opened at 20031027 18:44 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=831445&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: gcd/subres  another case Initial Comment: ratsimp of ((SQRT(3)*%I/21/2)*(SQRT(84541)*%I/(6*SQRT(3)) 11/2)^(1/3)+28*(SQRT(3)*%I/21/2)/(3*(SQRT(84541) *%I/(6*SQRT(3))11/2)^(1/3))+4)^312*((SQRT(3)*% I/21/2)*(SQRT(84541)*%I/(6*SQRT(3))11/2)^(1/3) +28*(SQRT(3)*%I/21/2)/(3*(SQRT(84541)*%I/ (6*SQRT(3))11/2)^(1/3))+4)^2+20*((SQRT(3)*%I/2 1/2)*(SQRT(84541)*%I/(6*SQRT(3))11/2)^(1/3)+28* (SQRT(3)*%I/21/2)/(3*(SQRT(84541)*%I/(6*SQRT (3))11/2)^(1/3))+4)+59 gives "quotient by zero" for gcd = subres, red, or algebraic; and an infinite loop (or at least is taking a very long time) for mod. spmod and ez work. Maxima 5.9.0 gcl 2.5.0  >Comment By: Dan Gildea (dgildea) Date: 20070723 08:31 Message: Logged In: YES user_id=1797506 Originator: NO subresgcd keeps taking remainders until it is left with a "common factor" of (#:sqrt(3)1764 1 1 0 (#:3^(1/6)1763 3 1)) which it doesn't realize is zero. oldgcd attempts to divide this out and gets division by zero.  Comment By: Robert Dodier (robert_dodier) Date: 20060711 01:11 Message: Logged In: YES user_id=501686 Same behavior in 5.9.3cvs.  Comment By: Stavros Macrakis (macrakis) Date: 20031027 18:46 Message: Logged In: YES user_id=588346 By the way, all the gcd algorithms work correctly with algebraic:true (not the default).  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=831445&group_id=4933 