You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(61) 
_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 





1
(4) 
2
(2) 
3
(3) 
4
(10) 
5
(2) 
6
(4) 
7
(4) 
8
(5) 
9
(1) 
10

11
(11) 
12
(2) 
13
(1) 
14
(8) 
15
(1) 
16
(3) 
17
(4) 
18
(5) 
19
(14) 
20
(5) 
21
(5) 
22
(15) 
23
(16) 
24
(1) 
25
(3) 
26
(3) 
27

28
(2) 



From: SourceForge.net <noreply@so...>  20070201 23:49:22

Bugs item #1649504, was opened at 20070201 02:30 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1649504&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Complex Group: None >Status: Pending >Resolution: Duplicate Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: adjoint of a matrix Initial Comment: There seems to be a funny definition of the adjoint of a matrix. The following input adjoint(matrix([1,%i],[1,%i])) gives the apparently incorrect result ([%i,%i],[1,1]). By contrast, the command transpose(conjugate(matrix([1,%i],[1,%i]))) yields the correct answer ([1,1],[%i,%i]). I hope this could be fixed easily. Thanks a lot, Wolfgang  >Comment By: Barton Willis (willisbl) Date: 20070201 17:49 Message: Logged In: YES user_id=895922 Originator: NO Duplicate; see 1649127  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1649504&group_id=4933 
From: SourceForge.net <noreply@so...>  20070201 23:47:05

Bugs item #1650226, was opened at 20070201 17:47 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1650226&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Polynomials Group: None Status: Open Resolution: None Priority: 6 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: Bind stack overflow for factor 7th degree Initial Comment: (%i1) 156*x^7+4808*x^6182041*x^51266489*x^4+43104271*x^3 +29839285*x^22542327662*x+7826952672$ (%i2) factor(%); Maxima encountered a Lisp error: Error in MACSYMATOPLEVEL [or a callee]: Bind stack overflow. The factors are all linear: (%i3) berlefact : false; (%o3) false (%i4) factor(%i1); (%o4) (x16)*(x+14)*(x+49)*(2*x11)*(2*x+21)*(3*x49)*(13*x63)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1650226&group_id=4933 
From: SourceForge.net <noreply@so...>  20070201 08:30:52

Bugs item #1649504, was opened at 20070201 00:30 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1649504&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Complex Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: adjoint of a matrix Initial Comment: There seems to be a funny definition of the adjoint of a matrix. The following input adjoint(matrix([1,%i],[1,%i])) gives the apparently incorrect result ([%i,%i],[1,1]). By contrast, the command transpose(conjugate(matrix([1,%i],[1,%i]))) yields the correct answer ([1,1],[%i,%i]). I hope this could be fixed easily. Thanks a lot, Wolfgang  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1649504&group_id=4933 
From: SourceForge.net <noreply@so...>  20070201 03:20:16

Bugs item #1636971, was opened at 20070116 09:42 Message generated for change (Comment added) made by sfrobot You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1636971&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Problem not in Maxima Group: None >Status: Closed Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: ?? Initial Comment: Maxima version: 5.9.3.99rc3Maxima build date: 12:37 9/3/2006host type: i686pcmingw32lispimplementationtype: GNU Common Lisp (GCL)lispimplementationversion: GCL 2.6.7 I wanted to know differential from ((x+k*sqrt(1x^2))^(k*asin(x))); I've written: diff((x+k*sqrt(1x^2))^(k*asin(x))); I 've seen: (k*sqrt(1x^2)+x)^(k*asin(x))*((k*log(k*sqrt(1x^2)+x))/sqrt(1x^2)+(k*(1(k*x)/sqrt(1x^2))*asin(x))/(k*sqrt(1x^2)+x))*del(x)+(k*sqrt(1x^2)+x)^(k*asin(x))*(asin(x)*log(k*sqrt(1x^2)+x)+(k*sqrt(1x^2)*asin(x))/(k*sqrt(1x^2)+x))*del(k) After simplify: (((2*k^2*x^32*k^2*x)*(k*sqrt(1x^2)+x)^(k*asin(x))*log(k*sqrt(1x^2)+x)+((kk^3)*x^3+(k^3k)*x)*(k*sqrt(1x^2)+x)^(k*asin(x))*asin(x))*del(x)+(((1k^2)*x^4+(2*k^21)*x^2k^2)*(k*sqrt(1x^2)+x)^(k*asin(x))*asin(x)*log(k*sqrt(1x^2)+x)+(k^2*x^4+2*k^2*x^2k^2)*(k*sqrt(1x^2)+x)^(k*asin(x))*asin(x))*del(k)+sqrt(1x^2)*((((k^3k)*x^2k^3)*(k*sqrt(1x^2)+x)^(k*asin(x))*log(k*sqrt(1x^2)+x)+(2*k^2*x^2k^2)*(k*sqrt(1x^2)+x)^(k*asin(x))*asin(x))*del(x)+((2*k*x^32*k*x)*(k*sqrt(1x^2)+x)^(k*asin(x))*asin(x)*log(k*sqrt(1x^2)+x)+(k*x^3k*x)*(k*sqrt(1x^2)+x)^(k*asin(x))*asin(x))*del(k)))/((1k^2)*x^4+sqrt(1x^2)*(2*k*x^32*k*x)+(2*k^21)*x^2k^2) But: diff((x+k*sqrt(1x^2))^(k*asin(x))) = (1+k^2)*%e^(k*asin(x))  >Comment By: SourceForge Robot (sfrobot) Date: 20070131 19:20 Message: Logged In: YES user_id=1312539 Originator: NO This Tracker item was closed automatically by the system. It was previously set to a Pending status, and the original submitter did not respond within 14 days (the time period specified by the administrator of this Tracker).  Comment By: Robert Dodier (robert_dodier) Date: 20070116 20:59 Message: Logged In: YES user_id=501686 Originator: NO A couple of comments  (1) Probably you want to specify a variable to differentiate with respect to  e.g. diff(<stuff>, x) instead of just diff(<stuff>). (2) I don't see any bug in diff here  I'm guessing the problem is that Maxima is not simplifying the result as much as you want it to. You can take up this question on the mailing list. (http://maxima.sourceforge.net/maximalist.html) (3) I guess I don't see that diff((x+k*sqrt(1x^2))^(k*asin(x))) = (1+k^2)*%e^(k*asin(x))  the righthand side seems to be somewhat different from what Maxima computes for diff((x+k*sqrt(1x^2))^(k*asin(x)), x) (which correct if I'm not mistaken). I've set the status of this report to "pending" so that it is closed automatically in 2 weeks since it doesn't appear to be a bug in diff.  Comment By: Raymond Toy (rtoy) Date: 20070116 10:36 Message: Logged In: YES user_id=28849 Originator: NO What do you want diff to do? I don't understand how you got your expected answer.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1636971&group_id=4933 