You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 


1
(2) 
2

3
(1) 
4

5
(2) 
6
(3) 
7
(3) 
8

9
(7) 
10
(5) 
11
(3) 
12
(2) 
13
(8) 
14
(10) 
15
(1) 
16
(12) 
17
(4) 
18
(14) 
19
(9) 
20
(1) 
21
(10) 
22
(5) 
23
(3) 
24
(2) 
25
(8) 
26
(6) 
27

28
(5) 
29
(2) 
30
(3) 
31
(10) 



From: SourceForge.net <noreply@so...>  20070112 18:56:00

Bugs item #902290, was opened at 20040222 15:11 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=902290&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 8 Private: No Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: Nonsimplifying nounforms: abs, realpart, carg, etc. Initial Comment: declare(q,complex)$ expr: rectform(q) => 'realpart(q) + %i * 'imagpart(q) subst(1,q,expr) => 'realpart(1) + %i * 'imagpart(1) (no simplification!)  Several Maxima mathematical functions do not simplify correctly as nounforms. As a general rule, simplifications should happen with all mathematicalfunction nounforms. For example, sin(0) == 'sin(0) == cos(%pi/2) == 'cos(%pi/2) == 0 But the following don't simplify: 'abs(1) 'realpart(1) 'imagpart(1) 'carg(1) Note also that cabs/carg are not treated symmetrically. cabs is an expressionmanipulating function (like factor) which can return the mathematical operator abs. But there is no mathematical operator corresponding to the expressionmanipuating function carg (cf also bug 620246).  >Comment By: Barton Willis (willisbl) Date: 20070112 12:55 Message: Logged In: YES user_id=895922 Originator: NO One observation about the simpabs code: if the special expandp is 1, signum1 will always return 1 for a sum. Since mminusp uses signum1, this means that the absolute value function will not apply the reflection simplification: (%i2) :lisp(setf expandp t); T (%i2) abs(ab)  abs(ba); (%o2) abs(ab)abs(ba) I don't think expandp ever gets set to true. So it's not a bug, I guess. If we want to make the simpabs reflection rule work the same as the trig reflection rules, we could: (setf (get '%mabs 'operators) 'simpabs) (setf (get 'mabs 'reflectionrule) #'evenfunctionreflect) (defmfun simpabs (x y z) (oneargcheck x) (setq y (simpcheck (cadr x) z)) (cond ((numberp y) (abs y)) ((or (ratnump y) ($bfloatp y)) (list (car y) (abs (cadr y)) (caddr y))) ((eq (setq z (csign y)) t) (cabs y)) ((memq z '($pos $pz)) y) ((memq z '($neg $nz)) (neg y)) ((eq z '$zero) 0) ((and (mexptp y) (integerp (caddr y))) (list (car y) (simpabs (list '(mabs) (cadr y)) nil t) (caddr y))) ((mtimesp y) (muln (mapcar #'(lambda (u) (simpabs (list '(mabs) u) nil t)) (cdr y)) t)) ((applyreflectionsimp (mop x) y t)) ;;((mminusp y) (list '(mabs simp) (neg y))) ((and (mbagp y) $listarith) ;; < I appended this!!! (cons (car y) (mapcar #'(lambda (u) (simpabs (list '(mabs) u) nil t)) (cdr y)))) (t (eqtest (list '(mabs) y) x))))  Comment By: Barton Willis (willisbl) Date: 20070112 05:25 Message: Logged In: YES user_id=895922 Originator: NO Isn't the 'abs(1) > abs(1) bug a noun / verb confusion (mabs vs %mabs)? Just doing (setf (get '%mabs 'operators) 'simpabs) allows 'abs(1) > 1. The test suite is OK with (setf (get '%mabs 'operators) 'simpabs).  Comment By: Robert Dodier (robert_dodier) Date: 20060723 13:41 Message: Logged In: YES user_id=501686 Observed in 5.9.3cvs. Also increasing the priority  this is a very weak point for Maxima.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=902290&group_id=4933 
From: SourceForge.net <noreply@so...>  20070112 11:25:50

Bugs item #902290, was opened at 20040222 15:11 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=902290&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 8 Private: No Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: Nonsimplifying nounforms: abs, realpart, carg, etc. Initial Comment: declare(q,complex)$ expr: rectform(q) => 'realpart(q) + %i * 'imagpart(q) subst(1,q,expr) => 'realpart(1) + %i * 'imagpart(1) (no simplification!)  Several Maxima mathematical functions do not simplify correctly as nounforms. As a general rule, simplifications should happen with all mathematicalfunction nounforms. For example, sin(0) == 'sin(0) == cos(%pi/2) == 'cos(%pi/2) == 0 But the following don't simplify: 'abs(1) 'realpart(1) 'imagpart(1) 'carg(1) Note also that cabs/carg are not treated symmetrically. cabs is an expressionmanipulating function (like factor) which can return the mathematical operator abs. But there is no mathematical operator corresponding to the expressionmanipuating function carg (cf also bug 620246).  >Comment By: Barton Willis (willisbl) Date: 20070112 05:25 Message: Logged In: YES user_id=895922 Originator: NO Isn't the 'abs(1) > abs(1) bug a noun / verb confusion (mabs vs %mabs)? Just doing (setf (get '%mabs 'operators) 'simpabs) allows 'abs(1) > 1. The test suite is OK with (setf (get '%mabs 'operators) 'simpabs).  Comment By: Robert Dodier (robert_dodier) Date: 20060723 13:41 Message: Logged In: YES user_id=501686 Observed in 5.9.3cvs. Also increasing the priority  this is a very weak point for Maxima.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=902290&group_id=4933 