You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(15) 
_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 


1
(5) 
2
(4) 
3
(1) 
4

5
(1) 
6
(10) 
7
(3) 
8
(2) 
9
(1) 
10
(3) 
11
(1) 
12
(1) 
13
(7) 
14
(5) 
15
(5) 
16
(3) 
17
(7) 
18
(1) 
19
(1) 
20

21
(1) 
22
(1) 
23

24

25
(1) 
26
(1) 
27

28
(1) 
29
(1) 
30
(1) 
31
(1) 



From: SourceForge.net <noreply@so...>  20060501 20:01:12

Bugs item #1479985, was opened at 20060501 14:01 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1479985&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core Group: None Status: Open Resolution: None Priority: 5 Submitted By: Robert Dodier (robert_dodier) Assigned to: Nobody/Anonymous (nobody) Summary: SIMPNCEXPT not careful about MNCEXPT (noncommutative expt) Initial Comment: SIMPNCEXPT is not careful about simplifying ^^ (MNCEXPT, noncommutative exponent). aa ^^ bb simplifies to aa ^ bb when aa is a scalar or constant, (e.g. %e ^^ matrix => %e ^ matrix) but that's not generally correct. We can debate whether SIMPNCEXPT ought to go to the expense of executing the matrix exponential code, but if not that, then SIMPNCEXPT should at least return a valid result.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1479985&group_id=4933 
From: SourceForge.net <noreply@so...>  20060501 17:04:47

Bugs item #1479149, was opened at 20060429 21:13 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1479149&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Integration with trigonometric function and following diff Initial Comment: integrate(k*x/f(x),x), knumber, f(x)thrigonometric function  sin(x)^2, cos(x)^2, Sin(x)^3 etc. gives a very poor result. axiom gives a better and short result. following diff(%,x) gives a non simply formula. So, maxima has a problem with a trigonometric function ;)  >Comment By: Barton Willis (willisbl) Date: 20060501 12:04 Message: Logged In: YES user_id=895922 Maxima uses a constant of integration when it thinks one is really needed: (%i12) integrate(x=1,x); (%o12) x^2/2=x+integrationconstant1 This is a bug listfor a better place to ask questions about how to use Maxima see: http://maxima.sourceforge.net/maximalist.html Barton  Comment By: Raymond Toy (rtoy) Date: 20060501 11:54 Message: Logged In: YES user_id=28849 Judicious use of logcontract, trigexpand and trigsimp will produce log(44*cos(x)^2)2*x*cos(x)/sin(x). That's pretty comparable to axiom's result. Also, integrate never returns a gratuitious constant of integration, just like tables of integrals never do If you want it, you have to add it yourself.  Comment By: Nobody/Anonymous (nobody) Date: 20060501 08:19 Message: Logged In: NO Yes, trigsimp was help me, it gives simpler, but not simplest formula. For example, k=2, f(x)=sin(x)^2 integrate(2*x/(sin(x)^2,x) with trigsimp gives a following formula: [{(cos(2x)1)*log(2*cos(x)+2)}+{(cos(2*x)1)*log(22*cos(x))}+2*x*sin(2*x)]/(cos(2*x)1) Simplest result is: 2*(log(sin(x)/2)x*ctg(x)) Or, maxima don't gives (don't can) a simplest result? P.S. By the way, how about C? integrate(x,x) = x^2/2 + C. doble integrate gives a x^3/6 + C*x + c(1)  Comment By: Barton Willis (willisbl) Date: 20060430 06:55 Message: Logged In: YES user_id=895922 Did Maxima give an incorrect result for any of these integrals? Maxima does gives a lengthy formula for integrate(x / sin(x)^2,x), but it seems to be correct: (%i1) integrate(x / sin(x)^2,x)$ (%i2) diff(%,x)  x/sin(x)^2$ (%i3) exponentialize(%)$ (%i4) ratsimp(%); (%o4) 0 In addition to exponentialize and ratsimp, Maxima has functions trigsimp, trigreduce, and trigexpand. Did you try using these functions to convert the antiderivatives into the form you were looking for? Barton  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1479149&group_id=4933 
From: SourceForge.net <noreply@so...>  20060501 16:59:12

Bugs item #1477965, was opened at 20060427 16:31 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1477965&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: specint bug Initial Comment: specint(exp(s*t)*(1cos(a*t))/t,t); returns 0, whereas the expression to integrate is always positive. laplace((1cos(a*t))/t,t,s) returns the correct result, log((a^2+s^2)/s^2) [A&S 29.3.108]. A similar bug affects specint(exp(s*t)*(1cosh(a*t))/t,t); [A&S 29.3.109]. and specint(exp(s*t)*sin(t)/t); [A&S 29.3.109] Entered by Edmond.Orignac <at> wanadoo <dot> fr  >Comment By: Raymond Toy (rtoy) Date: 20060501 12:59 Message: Logged In: YES user_id=28849 This happens because specint distributes exp(s*t) and is then unable to compute the integrals. Instead it returns some bogus 'failinf1p137. And when the terms are all added together, they just happen to cancel out, resulting in 0. I do not have a fix for this. I think it's relatively easy to make specint return the integral, which is not so good, but certainly better than the wrong answer.  Comment By: Nobody/Anonymous (nobody) Date: 20060428 15:56 Message: Logged In: NO Maxima version: 5.9.3 Maxima build date: 22:48 4/16/2006 host type: i686pclinuxgnu lispimplementationtype: CMU Common Lisp lispimplementationversion: CVS release19a 19arelease20040728 + minimal debian patches Version information missing from my bug report of yesterday.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1477965&group_id=4933 
From: SourceForge.net <noreply@so...>  20060501 16:54:51

Bugs item #1479149, was opened at 20060429 22:13 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1479149&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Integration with trigonometric function and following diff Initial Comment: integrate(k*x/f(x),x), knumber, f(x)thrigonometric function  sin(x)^2, cos(x)^2, Sin(x)^3 etc. gives a very poor result. axiom gives a better and short result. following diff(%,x) gives a non simply formula. So, maxima has a problem with a trigonometric function ;)  >Comment By: Raymond Toy (rtoy) Date: 20060501 12:54 Message: Logged In: YES user_id=28849 Judicious use of logcontract, trigexpand and trigsimp will produce log(44*cos(x)^2)2*x*cos(x)/sin(x). That's pretty comparable to axiom's result. Also, integrate never returns a gratuitious constant of integration, just like tables of integrals never do If you want it, you have to add it yourself.  Comment By: Nobody/Anonymous (nobody) Date: 20060501 09:19 Message: Logged In: NO Yes, trigsimp was help me, it gives simpler, but not simplest formula. For example, k=2, f(x)=sin(x)^2 integrate(2*x/(sin(x)^2,x) with trigsimp gives a following formula: [{(cos(2x)1)*log(2*cos(x)+2)}+{(cos(2*x)1)*log(22*cos(x))}+2*x*sin(2*x)]/(cos(2*x)1) Simplest result is: 2*(log(sin(x)/2)x*ctg(x)) Or, maxima don't gives (don't can) a simplest result? P.S. By the way, how about C? integrate(x,x) = x^2/2 + C. doble integrate gives a x^3/6 + C*x + c(1)  Comment By: Barton Willis (willisbl) Date: 20060430 07:55 Message: Logged In: YES user_id=895922 Did Maxima give an incorrect result for any of these integrals? Maxima does gives a lengthy formula for integrate(x / sin(x)^2,x), but it seems to be correct: (%i1) integrate(x / sin(x)^2,x)$ (%i2) diff(%,x)  x/sin(x)^2$ (%i3) exponentialize(%)$ (%i4) ratsimp(%); (%o4) 0 In addition to exponentialize and ratsimp, Maxima has functions trigsimp, trigreduce, and trigexpand. Did you try using these functions to convert the antiderivatives into the form you were looking for? Barton  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1479149&group_id=4933 
From: SourceForge.net <noreply@so...>  20060501 13:19:59

Bugs item #1479149, was opened at 20060429 19:13 Message generated for change (Comment added) made by nobody You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1479149&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Integration with trigonometric function and following diff Initial Comment: integrate(k*x/f(x),x), knumber, f(x)thrigonometric function  sin(x)^2, cos(x)^2, Sin(x)^3 etc. gives a very poor result. axiom gives a better and short result. following diff(%,x) gives a non simply formula. So, maxima has a problem with a trigonometric function ;)  Comment By: Nobody/Anonymous (nobody) Date: 20060501 06:19 Message: Logged In: NO Yes, trigsimp was help me, it gives simpler, but not simplest formula. For example, k=2, f(x)=sin(x)^2 integrate(2*x/(sin(x)^2,x) with trigsimp gives a following formula: [{(cos(2x)1)*log(2*cos(x)+2)}+{(cos(2*x)1)*log(22*cos(x))}+2*x*sin(2*x)]/(cos(2*x)1) Simplest result is: 2*(log(sin(x)/2)x*ctg(x)) Or, maxima don't gives (don't can) a simplest result? P.S. By the way, how about C? integrate(x,x) = x^2/2 + C. doble integrate gives a x^3/6 + C*x + c(1)  Comment By: Barton Willis (willisbl) Date: 20060430 04:55 Message: Logged In: YES user_id=895922 Did Maxima give an incorrect result for any of these integrals? Maxima does gives a lengthy formula for integrate(x / sin(x)^2,x), but it seems to be correct: (%i1) integrate(x / sin(x)^2,x)$ (%i2) diff(%,x)  x/sin(x)^2$ (%i3) exponentialize(%)$ (%i4) ratsimp(%); (%o4) 0 In addition to exponentialize and ratsimp, Maxima has functions trigsimp, trigreduce, and trigexpand. Did you try using these functions to convert the antiderivatives into the form you were looking for? Barton  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1479149&group_id=4933 