You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(32) 
_{Dec}

S  M  T  W  T  F  S 



1
(1) 
2
(3) 
3
(1) 
4

5
(1) 
6
(1) 
7
(2) 
8
(1) 
9
(5) 
10

11

12
(1) 
13
(4) 
14
(2) 
15
(1) 
16
(4) 
17

18

19
(1) 
20

21
(1) 
22
(2) 
23

24
(16) 
25
(3) 
26

27

28

29
(3) 
30
(12) 



From: SourceForge.net <noreply@so...>  20051109 19:39:11

Bugs item #1309432, was opened at 20050930 08:19 Message generated for change (Comment added) made by macrakis You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1309432&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: integrate(1/cosh(a*x)^2,x,inf,inf); Initial Comment:  Maxima version: 5.9.1 Maxima build date: 16:35 2/10/2005 host type: i686pclinuxgnu lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.6  integrate(1/cosh(a*x)^2,x,inf,inf); Is a positive, negative, or zero? p; (%o3) 0 Correct answer is 2/a.  >Comment By: Stavros Macrakis (macrakis) Date: 20051109 14:39 Message: Logged In: YES user_id=588346 Interestingly, if you exponentialize the expression first, it gets the right answer. But still asks, unnecessarily, the sign of 'a'.  Comment By: Stavros Macrakis (macrakis) Date: 20051109 14:34 Message: Logged In: YES user_id=588346 Interestingly, if you exponentialize the expression first, it gets the right answer. But still asks, unnecessarily, the sign of 'a'.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1309432&group_id=4933 
From: SourceForge.net <noreply@so...>  20051109 19:34:32

Bugs item #1309432, was opened at 20050930 08:19 Message generated for change (Comment added) made by macrakis You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1309432&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: integrate(1/cosh(a*x)^2,x,inf,inf); Initial Comment:  Maxima version: 5.9.1 Maxima build date: 16:35 2/10/2005 host type: i686pclinuxgnu lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.6  integrate(1/cosh(a*x)^2,x,inf,inf); Is a positive, negative, or zero? p; (%o3) 0 Correct answer is 2/a.  >Comment By: Stavros Macrakis (macrakis) Date: 20051109 14:34 Message: Logged In: YES user_id=588346 Interestingly, if you exponentialize the expression first, it gets the right answer. But still asks, unnecessarily, the sign of 'a'.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1309432&group_id=4933 
From: SourceForge.net <noreply@so...>  20051109 18:08:23

Bugs item #1340694, was opened at 20051028 09:31 Message generated for change (Settings changed) made by macrakis You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1340694&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None >Status: Closed Resolution: Duplicate Priority: 5 Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: no doc for 'polydecomp': Initial Comment: There is no user documentation for 'polydecomp': (%i1) describe("polydecomp"); (%o1) false There is such a function: (%i2) polydecomp(x^2 + 2*x + 1,x); (%o2) [x^2,x+1] Barton  Comment By: Stavros Macrakis (macrakis) Date: 20051109 13:07 Message: Logged In: YES user_id=588346 I already submitted this documentation bug to the sourceforge bug database in August 2002: "No describe(polydecomp)", bug #593531, and included documentation. Below please find a second draft of the documentation for polydecomp which I included in the followup to the August 2002 bug report. s  Polydecomp(p,v) considers p as a polynomial in v and decomposes it into the functional composition of polynomials in v. A return value of [p1,p2,...,pn] denotes lambda([v],p1) ( lambda([v],p2) ( ... v ... ) ) Degree(pi) > 1 for i<n. Examples: polydecomp(x^210,x) => [ x^7, x^5, x^3, x^2 ] poly: expand( subst( x^3x1, x, x^2a )) => x^62*x^42*x^3+x^2+2*xa+1 polydecomp( poly , x) => [ x^2a, x^3x1] The following function composes [ex1,ex2,...] as functions in var; it is the inverse of polydecomp: /* Computes the functional composition of the expressions in exlist as functions in var, returning an expression in var. */ compose_ex(exlist,var):= block([r:var], for i in exlist do r: subst(i,var,r), r ) $ Reexpress above example using composef: polydecomp(compose_ex( [ x^2a, x^3x1 ], x), x) => [ x^2a, x^3x1] Note that though compose_ex(polydecomp(p,x),x) always returns p (unexpanded), polydecomp(compose_ex([p1...],x),x) does *not* necessarily return [p1...]: polydecomp(compose_ex( [x^2+2*x+3, x^2] , x), x) => [x^2+2, x^2+1] polydecomp(compose_ex( [x^2+x+1, x^2+x+1], x), x) => [(x^2+3)/4, (x^2+5)/2, 2*x+1]  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1340694&group_id=4933 
From: SourceForge.net <noreply@so...>  20051109 18:08:04

Bugs item #1340694, was opened at 20051028 09:31 Message generated for change (Comment added) made by macrakis You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1340694&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open >Resolution: Duplicate Priority: 5 Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: no doc for 'polydecomp': Initial Comment: There is no user documentation for 'polydecomp': (%i1) describe("polydecomp"); (%o1) false There is such a function: (%i2) polydecomp(x^2 + 2*x + 1,x); (%o2) [x^2,x+1] Barton  >Comment By: Stavros Macrakis (macrakis) Date: 20051109 13:07 Message: Logged In: YES user_id=588346 I already submitted this documentation bug to the sourceforge bug database in August 2002: "No describe(polydecomp)", bug #593531, and included documentation. Below please find a second draft of the documentation for polydecomp which I included in the followup to the August 2002 bug report. s  Polydecomp(p,v) considers p as a polynomial in v and decomposes it into the functional composition of polynomials in v. A return value of [p1,p2,...,pn] denotes lambda([v],p1) ( lambda([v],p2) ( ... v ... ) ) Degree(pi) > 1 for i<n. Examples: polydecomp(x^210,x) => [ x^7, x^5, x^3, x^2 ] poly: expand( subst( x^3x1, x, x^2a )) => x^62*x^42*x^3+x^2+2*xa+1 polydecomp( poly , x) => [ x^2a, x^3x1] The following function composes [ex1,ex2,...] as functions in var; it is the inverse of polydecomp: /* Computes the functional composition of the expressions in exlist as functions in var, returning an expression in var. */ compose_ex(exlist,var):= block([r:var], for i in exlist do r: subst(i,var,r), r ) $ Reexpress above example using composef: polydecomp(compose_ex( [ x^2a, x^3x1 ], x), x) => [ x^2a, x^3x1] Note that though compose_ex(polydecomp(p,x),x) always returns p (unexpanded), polydecomp(compose_ex([p1...],x),x) does *not* necessarily return [p1...]: polydecomp(compose_ex( [x^2+2*x+3, x^2] , x), x) => [x^2+2, x^2+1] polydecomp(compose_ex( [x^2+x+1, x^2+x+1], x), x) => [(x^2+3)/4, (x^2+5)/2, 2*x+1]  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1340694&group_id=4933 
From: SourceForge.net <noreply@so...>  20051109 11:28:08

Bugs item #1352101, was opened at 20051109 03:28 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1352101&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: solve exponentialequation problem Initial Comment: I´m using Maxima 5.9.2 When i type: solve(exp(x)=x,x) Maxima only gives: x=exp(x) Is this a bug?  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1352101&group_id=4933 