You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(105) 
_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 





1

2
(2) 
3
(1) 
4

5
(2) 
6

7

8
(7) 
9
(6) 
10

11

12

13

14

15
(1) 
16
(2) 
17

18

19
(6) 
20

21
(3) 
22
(2) 
23
(1) 
24
(1) 
25

26
(2) 
27
(1) 
28

29
(2) 
30


From: SourceForge.net <noreply@so...>  20040419 23:25:05

Bugs item #932076, was opened at 20040408 19:06 Message generated for change (Comment added) made by macrakis You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=932076&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: ode2( 'diff(y,x)=%i*y+sin(x), y, x) => div by 0 Initial Comment: ode2( 'diff(y,x)=%i*y+sin(x), y, x) gives division by 0  >Comment By: Stavros Macrakis (macrakis) Date: 20040419 19:25 Message: Logged In: YES user_id=588346 Same problem if you solve the equation 'diff(y,x)= k*y+sin(x)  the solution is not valid at k=%i, but it doesn't ask. Correct solution for k=%i is y = ((x%i*%c%i)*sin(x)+(%i*x%c)*cos(x))/2  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=932076&group_id=4933 
From: SourceForge.net <noreply@so...>  20040419 23:02:15

Bugs item #938235, was opened at 20040419 20:02 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=938235&group_id=4933 Category: Xmaxima Group: None Status: Open Resolution: None Priority: 5 Submitted By: Luis Claudio (gabryuri) Assigned to: Nobody/Anonymous (nobody) Summary: integrate((1/2)*u^21/u^5,u,1,sqrt(2)); is not correct... Initial Comment: Sorry, but in the integral (1/2)*u^21/u^5 with u=1 to sqrt(2) them Maxima program return SQRT(2) 1    3 6 Maxima comand: integrate((1/2)*u^21/u^5,u,1,sqrt (2)); But the answer correct is: sqrt(2) 17    3 48 See in MuPad, Maple or Mathematica. sorry by english. Luis Cláudio  Brasilia  Brazil. luis_claudio2000@...  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=938235&group_id=4933 
From: SourceForge.net <noreply@so...>  20040419 22:50:16

Bugs item #659288, was opened at 20021228 01:02 Message generated for change (Comment added) made by macrakis You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=659288&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) >Summary: limit(atan(tan(x)^2),x,inf)=>Internal er Initial Comment: limit(atan(tan(x)^2),x,inf); SIGN called on UND.  an error. The correct answer is of course IND  the limit set is [0,%pi/2). Presumably what is happening here is that there is an intermediate calculation of limit(tan(x)^2,x,inf).  >Comment By: Stavros Macrakis (macrakis) Date: 20040419 18:50 Message: Logged In: YES user_id=588346 limit(atan(und)) also gets Sign called on UND. Of course, onearg limit is not advertised to work with UND, but internally it seems likely that this is what it is doing.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=659288&group_id=4933 
From: SourceForge.net <noreply@so...>  20040419 20:00:48

Bugs item #938134, was opened at 20040419 16:00 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=938134&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: diff(realpart) bogus Initial Comment: declare(z,complex)$ diff(realpart(z),z) => realpart(1) ?!?! Realpart is nowhere differentiable!  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=938134&group_id=4933 
From: SourceForge.net <noreply@so...>  20040419 19:55:20

Bugs item #935030, was opened at 20040414 12:17 Message generated for change (Comment added) made by macrakis You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=935030&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: ratsimp with algebraic == true Initial Comment: With algebraic == true, ratsimp doesn't fully simplify some expressions. Here is an example (C1) display2d : false$ (C2) algebraic : true$ (C3) integrate(1/(2+x^3),x)$ (C4) ratsimp(diff(%,x)); (D4) 4*2^(2/3)/(4*2^(2/3)*x^3+8*2^(2/3)) (C5) ratsimp(%); (D5) 1/(x^3+2) Maybe this is the purpose of fullratsimp, but it seems odd that ratsimp fails to cancel the factor of 2^(2/3). I discovered this when I ran run_testsuite with algebraic == true. (C6) build_info(); Maxima version: 5.9.0.1cvs Maxima build date: 7:58 4/5/2004 host type: i686pcmingw32 lispimplementationtype: Kyoto Common Lisp lispimplementationversion: GCL 2.7.0 Barton  >Comment By: Stavros Macrakis (macrakis) Date: 20040419 15:55 Message: Logged In: YES user_id=588346 Though this is annoying and surprising, it *is* documented: >>>>>>>>>(fullratsimp) When nonrational expressions are involved, one call to RATSIMP followed as is usual by nonrational ("general") simplification may not be sufficient to return a simplified result. <<<<<<<<< Also, the algebraic flag only changes the behavior with gcd=spmod. With gcd=subres (the default), you need two ratsimp's regardless of the setting of algebraic.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=935030&group_id=4933 
From: SourceForge.net <noreply@so...>  20040419 19:49:51

Bugs item #884300, was opened at 20040125 13:57 Message generated for change (Comment added) made by macrakis You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=884300&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: solve and ALL Initial Comment: Solve/algsys is inconsistent in how it represents the solution "all values satisfy the equation": solve([x=x],x) returns ALL solve([y=y],x) returns ALL solve([x=x],[x]) returns ALL solve([x=x],[x,y]) returns [[x = %R10, y = %R9]] solve([],[x]) returns [] First of all, the last case is simply wrong. The solution to "find all x such that the empty set of constraints is satisfied" is "all x", not "no x" (which is what [] means). After all, the y=y case above includes an equation which doesn't even mention x. The other cases are inconsistent. We should use one or the other. The %R10 approach (from algsys) seems better, because it is completely consistent with the non all case. Any program using Solve will have to make a special case for ALL otherwise. I would also argue that SOLVE_INCONSISTENT_ERROR should default to FALSE. That is, inconsistent systems should return [], not give an error.  >Comment By: Stavros Macrakis (macrakis) Date: 20040419 15:49 Message: Logged In: YES user_id=588346 A similar problem: solve( (x1)^2 = (1x)^2 , x) returns [x=x] and not ALL. This is actually worse than an inconsistency: since x appears on both sides of the solution, a calling program will assume that Solve failed to find a solution.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=884300&group_id=4933 