You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(85) 
_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1
(1) 
2
(2) 
3
(3) 
4

5
(5) 
6
(1) 
7
(3) 
8
(1) 
9

10
(3) 
11
(5) 
12
(3) 
13

14

15
(5) 
16
(1) 
17
(1) 
18
(7) 
19
(1) 
20
(3) 
21

22

23

24

25

26

27
(3) 
28
(3) 
29
(1) 
30
(5) 






From: SourceForge.net <noreply@so...>  20031107 17:51:03

Bugs item #836773, was opened at 20031105 21:43 Message generated for change (Comment added) made by wjenkner You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=836773&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: ntrig is broken Initial Comment: (C4) load("ntrig.mac"); (D4) ?C\:\/maxima\/Maxima\/share\/maxima\/5\.9\.0 \/share\/trigonometry\/ntrig\.mac (C5) sin(6*%pi/5); (D5) (SQRT(5)1)*SQRT(SQRT(5)+5)/(4*SQRT(2)) (C6) float(%); (D6) 0.58778525229247 (C7) sin(float(6*%pi/5)); (D7) 0.58778525229247 Barton  >Comment By: Wolfgang Jenkner (wjenkner) Date: 20031107 18:51 Message: Logged In: YES user_id=581700 Perhaps simply rewrite USIN(N):= BLOCK([YUK:mod(N,20)], signum(YUK)*(YUK:abs(mod(YUK,10)), IF YUK=1 THEN (SQRT(5)1)/4 ELSE IF YUK=2 THEN (SQRT(5)1)*SQRT(SQRT(5)+5)/(4*SQRT(2)) ELSE IF YUK=3 THEN (SQRT(5)+1)/4 ELSE IF YUK=4 THEN SQRT(SQRT(5)+5)/(2*SQRT(2))))$ UCOS(N):= USIN(5N)$  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=836773&group_id=4933 
From: SourceForge.net <noreply@so...>  20031107 17:44:32

Bugs item #706562, was opened at 20030319 23:07 Message generated for change (Comment added) made by wjenkner You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=706562&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: mod(2,4) => 2 not 2 Initial Comment: mod(2,4) => 2 It should be 2 to be consistent with mod(2,4), mod(6,4), etc. Otherwise there are FIVE distinct values for mod (x,4) instead of four. Maxima 5.9.0 GCL 2.5.0 mingw Windows 2000  >Comment By: Wolfgang Jenkner (wjenkner) Date: 20031107 18:44 Message: Logged In: YES user_id=581700 GCL imports some symbols for modular arithmetic from the SYSTEM package (see maximapackage.lisp). In particular, >(lispimplementationversion) "GCL25.2000000000000002" >(let ((si:modulus 4)) (si:cmod 2)) 2 >(let ((si:modulus 4)) (si:cmod 2)) 2 The other lisps define this in rat3a.lisp * (let ((modulus 4)) (cmod 2)) 2 * (let ((modulus 4)) (cmod 2)) 2  Comment By: Wolfgang Jenkner (wjenkner) Date: 20030322 16:42 Message: Logged In: YES user_id=581700 For both Clisp and SBCL I get (C1) makelist(mod(i,4),i,4,1); (D1) [0, 1, 2,  1] Wolfgang  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=706562&group_id=4933 
From: SourceForge.net <noreply@so...>  20031107 17:38:51

Bugs item #836708, was opened at 20031105 20:00 Message generated for change (Comment added) made by wjenkner You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=836708&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: rat/tellrat/modulus:2 can return 1 Initial Comment: algebraic:true$ modulus:2$ tellrat(a^2+a)$ rat(a^2) =>  a With modulus=2, 1 is supposed to simplify to 1. This can be fixed (bizarrely) by ev: ev(%) => a  >Comment By: Wolfgang Jenkner (wjenkner) Date: 20031107 18:38 Message: Logged In: YES user_id=581700 On both SBCL and CLISP I get the expected result (C4) rat(a^2); (D4)/R/ a I'd guess this is the same GCL specific misfeature as #706562 (mod(2,4) => 2 not 2).  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=836708&group_id=4933 