You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(27) 
_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1
(1) 
2
(2) 
3
(3) 
4

5
(5) 
6
(1) 
7
(3) 
8
(1) 
9

10
(3) 
11
(5) 
12
(3) 
13

14

15
(5) 
16
(1) 
17
(1) 
18
(7) 
19
(1) 
20
(3) 
21

22

23

24

25

26

27
(3) 
28
(3) 
29
(1) 
30
(5) 






From: SourceForge.net <noreply@so...>  20031112 17:36:30

Bugs item #840848, was opened at 20031112 12:36 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=840848&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: trigexpand doesn't enter unknown functions Initial Comment: trigexpand(f(sin(x)^2)) returns f(sin(x)^2). That is, it doesn't recurse into the arguments of unknown functions. Compare with trigreduce(f(sin(2*x))). Why the discrepancy? If there is a good reason (which I doubt), this behavior should at least be documented, recommending the use of scanmap. I discovered this when trying to simplify an expression involving atan2(...sin(x)^2+cos(x)^2...). Not even atan2 is considered a 'known' function here....  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=840848&group_id=4933 
From: SourceForge.net <noreply@so...>  20031112 14:49:54

Bugs item #836780, was opened at 20031105 15:55 Message generated for change (Comment added) made by macrakis You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=836780&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: taylor(acosh(x),x,1,1) Initial Comment: The following is wrong: (C1) taylor(acosh(x),x,1,1); (D1) (%PI2*LOG(SQRT(2)+1))/2SQRT(2)*(x1)/2 Converting to log form, we do better  it's correct, I believe. But the result isn't simplified. (C2) taylor(logarc(acosh(x)),x,1,1); (D2) +SQRT(2)*SQRT(x1) (C3) ?print(%); ((MRAT SIMP (((MEXPT RATSIMP) 2 ((RAT) 1 2)) ((%LOG SIMP) ((MPLUS SIMP) $x ((MEXPT SIMP) ((MPLUS SIMP) 1 ((MEXPT SIMP) $x 2)) ((RAT) 1 2)))) ((MPLUS SIMP) 1 $x)) (#:2^(1/2)21846 #:LOG(SQRT(2)+1)21846 #:2^(1/2)21846 #:%PI21846 #:ACOSH(x)21846 #:x21846) (($x ((1 . 1)) 1 NIL #:2^(1/2)21846 . 2)) TRUNC) PS (#:2^(1/2)21846 . 2) ((1 . 1)) ((1 . 2) (#:2^(1/2)21846 1 1) . 1)) (D3) +SQRT(2)*SQRT(x1) (C4) Barton  >Comment By: Stavros Macrakis (macrakis) Date: 20031112 09:49 Message: Logged In: YES user_id=588346 The leading '+' in Taylor series is a property (bug?) of 1d display. Compare string(taylor(1,x,0,0)) => +1  Comment By: Barton Willis (willisbl) Date: 20031112 09:41 Message: Logged In: YES user_id=895922 No, I wasn't bothered by the unnecessary ratvars; rather, I was puzzled by the leading '+' in the result: +SQRT(2)*SQRT(x1) < why +sqrt(2) ...? Maybe the leading '+' is harmless; however, it's unusual. Barton  Comment By: Stavros Macrakis (macrakis) Date: 20031110 15:19 Message: Logged In: YES user_id=588346 This was already reported in bug report # 623165. I am not sure what you mean by "the result isn't simplified". Are you thinking that the unnecessary ratvars are a problem? That is the usual way that CREs work: in a fresh Maxima, try (?print(rat(x)), ?print(rat(y)), ?print(rat(x)) )$  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=836780&group_id=4933 
From: SourceForge.net <noreply@so...>  20031112 14:41:54

Bugs item #836780, was opened at 20031105 14:55 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=836780&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: taylor(acosh(x),x,1,1) Initial Comment: The following is wrong: (C1) taylor(acosh(x),x,1,1); (D1) (%PI2*LOG(SQRT(2)+1))/2SQRT(2)*(x1)/2 Converting to log form, we do better  it's correct, I believe. But the result isn't simplified. (C2) taylor(logarc(acosh(x)),x,1,1); (D2) +SQRT(2)*SQRT(x1) (C3) ?print(%); ((MRAT SIMP (((MEXPT RATSIMP) 2 ((RAT) 1 2)) ((%LOG SIMP) ((MPLUS SIMP) $x ((MEXPT SIMP) ((MPLUS SIMP) 1 ((MEXPT SIMP) $x 2)) ((RAT) 1 2)))) ((MPLUS SIMP) 1 $x)) (#:2^(1/2)21846 #:LOG(SQRT(2)+1)21846 #:2^(1/2)21846 #:%PI21846 #:ACOSH(x)21846 #:x21846) (($x ((1 . 1)) 1 NIL #:2^(1/2)21846 . 2)) TRUNC) PS (#:2^(1/2)21846 . 2) ((1 . 1)) ((1 . 2) (#:2^(1/2)21846 1 1) . 1)) (D3) +SQRT(2)*SQRT(x1) (C4) Barton  >Comment By: Barton Willis (willisbl) Date: 20031112 08:41 Message: Logged In: YES user_id=895922 No, I wasn't bothered by the unnecessary ratvars; rather, I was puzzled by the leading '+' in the result: +SQRT(2)*SQRT(x1) < why +sqrt(2) ...? Maybe the leading '+' is harmless; however, it's unusual. Barton  Comment By: Stavros Macrakis (macrakis) Date: 20031110 14:19 Message: Logged In: YES user_id=588346 This was already reported in bug report # 623165. I am not sure what you mean by "the result isn't simplified". Are you thinking that the unnecessary ratvars are a problem? That is the usual way that CREs work: in a fresh Maxima, try (?print(rat(x)), ?print(rat(y)), ?print(rat(x)) )$  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=836780&group_id=4933 