You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(3) 
_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 



1
(2) 
2
(1) 
3
(9) 
4
(2) 
5
(1) 
6

7
(5) 
8
(3) 
9
(2) 
10

11

12
(1) 
13

14
(1) 
15
(6) 
16
(3) 
17
(2) 
18
(5) 
19

20

21
(3) 
22
(5) 
23
(1) 
24
(1) 
25

26

27
(1) 
28
(4) 
29

30
(1) 
31



From: <noreply@so...>  20021027 20:40:38

Bugs item #629539, was opened at 20021027 14:40 You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=629539&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Barton Willis (willisb) Assigned to: Nobody/Anonymous (nobody) Summary: taylor(x + sqrt(1+x^2),x,a,2) Initial Comment: (C1) display2d : false; (D1) FALSE (C2) p : x + sqrt(1+x^2); (D2) SQRT(x^2+1)+x With ratfac true, Maxima finds the Taylor polynomial of p centered at a with no problem (C3) ratfac : true; (D3) TRUE (C4) taylor(p,x,a,2); (D4) SQRT(a^2+1)+a+(a^2+SQRT(a^2+1)*a+1)*(xa)/(a^2+1) +(xa)^2/(2*SQRT(a^2+1)*(a^2+1)) But setting ratfac to false, we get an error (C5) ratfac : false; (D5) FALSE (C6) taylor(p,x,a,2); Quotient by a polynomial of higher degree  an error. Quitting. To debug this try DEBUGMODE(TRUE);) (C7) This same bug may be responsible for the bug (C11) taylor(asin(x),x,a,2), ratfac : false; Quotient by a polynomial of higher degree  an error. Quitting. To debug this try DEBUGMODE(TRUE);) (C12) taylor(asin(x),x,a,2), ratfac : true; Is (a1)*(a+1) positive, negative, or zero? neg; (D12) ATAN2(a,SQRT(1a^2))(a^2+SQRT(a^21)*a1)*%I*(xa) /((a+SQRT(a^21))*(a^21)) +(2*a^3+2*SQRT(a^21)*a^22*aSQRT(a^21))*%I*a *(xa)^2 /(2*(a+SQRT(a^21))^2*(a^21)^2) (C13)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=629539&group_id=4933 