You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(21) 
_{Oct}

_{Nov}

_{Dec}

From: dan hayes <zmth@us...>  20140829 02:57:36

From: Robert Dodier <robert_dodier@us...>  20140825 23:25:04

From: Robert Dodier <robert_dodier@us...>  20140825 22:53:43

From: Robert Dodier <robert_dodier@us...>  20140825 22:51:36

From: Robert Dodier <robert_dodier@us...>  20140825 22:13:48

From: Robert Dodier <robert_dodier@us...>  20140825 22:09:39

From: Robert Dodier <robert_dodier@us...>  20140825 18:50:45

From: Robert Dodier <robert_dodier@us...>  20140825 18:47:47

From: Robert Dodier <robert_dodier@us...>  20140825 17:43:39

From: Robert Dodier <robert_dodier@us...>  20140825 17:38:29

From: Robert Dodier <robert_dodier@us...>  20140825 17:25:16

From: Jorge Barros de Abreu <ficmatin10@gm...>  20140824 12:56:48

Hi. Is all ok with english html doc/info generation???? On my machine the category box is broken. In english html manual and in portuguese html manual. I make bootstrap/configure/make/make html.  Data Estelar 2456894,032488 http://sites.google.com/site/ficmatinf Desejolhe Paz, Vida Longa e Prosperidade. São Bem Vindas Mensagens no Formato texto UTF8 com Acentos. 
From: Kürbissuppe <kuerbissuppe@us...>  20140823 08:09:56

From: Hal Clark <hdeanclark@gm...>  20140823 05:41:46

On 8/22/14, Viktor T. Toth <vttoth@...> wrote: > The expressions > > log(x + sqrt(c^2 + x^2)) > > vs. > > asinh(x/abs(c)) = log(x/abs(c) + sqrt(1 + (x/c)^2)) > > differ only by the additive constant log(abs(c)), which can be absorbed > into > an integration constant. So both are valid forms for the indefinite > integral > I believe. You can also verify this by differentiating both expressions, > and > noting that after simplification/factorization, you get back your original > expression. > > > Viktor Toth > Oh  you're right. My mistake. I misdifferentiated when I checked. My numerical comparisons were off by ... log(c). Still, I find it a little surprising that asinh(x/c) is output in lieu of log(x + sqrt(c^2 + x^2)). This is no bug though! Thanks, hal 
From: Viktor T. Toth <vttoth@vt...>  20140823 05:37:17

The expressions log(x + sqrt(c^2 + x^2)) vs. asinh(x/abs(c)) = log(x/abs(c) + sqrt(1 + (x/c)^2)) differ only by the additive constant log(abs(c)), which can be absorbed into an integration constant. So both are valid forms for the indefinite integral I believe. You can also verify this by differentiating both expressions, and noting that after simplification/factorization, you get back your original expression. Viktor Toth Original Message From: Hal Clark [mailto:hdeanclark@...] Sent: Friday, August 22, 2014 9:02 PM To: maximabugs@... Subject: [Maximabugs] Integration bug Hello list, Maxima 5.33.05 is integrating (1/sqrt(c*c + x*x)) dx incorrectly. Entering integrate(1/sqrt(c*c+x*x),x); causes Maxima to spit out asinh(x/abs(c)) which is equal to log((x/abs(c)) + sqrt((x*x/(c*c)) + 1)). The correct result is log(x + sqrt(c*c + x*x)). which I verified with Wolfram Alpha, byhand, and numerically for a few values. So there is a missing factor of c within the log Maxima spits out.  My machine is an x86_64 running an uptodate Arch Linux with sbcl 1.2.2. I'm interacting with Maxima through wxMaxima 13.04.22. $ uname a Linux  3.16.02ARCH #1 SMP PREEMPT Mon Aug 4 19:04:45 CEST 2014 x86_64 GNU/Linux hal   Slashdot TV. Video for Nerds. Stuff that matters. http://tv.slashdot.org/ _______________________________________________ Maximabugs mailing list Maximabugs@... https://lists.sourceforge.net/lists/listinfo/maximabugs 
From: dan hayes <zmth@us...>  20140823 04:55:32

From: dan hayes <zmth@us...>  20140823 03:46:45

From: dan hayes <zmth@us...>  20140823 03:18:08

From: Hal Clark <hdeanclark@gm...>  20140823 01:02:36

Hello list, Maxima 5.33.05 is integrating (1/sqrt(c*c + x*x)) dx incorrectly. Entering integrate(1/sqrt(c*c+x*x),x); causes Maxima to spit out asinh(x/abs(c)) which is equal to log((x/abs(c)) + sqrt((x*x/(c*c)) + 1)). The correct result is log(x + sqrt(c*c + x*x)). which I verified with Wolfram Alpha, byhand, and numerically for a few values. So there is a missing factor of c within the log Maxima spits out.  My machine is an x86_64 running an uptodate Arch Linux with sbcl 1.2.2. I'm interacting with Maxima through wxMaxima 13.04.22. $ uname a Linux  3.16.02ARCH #1 SMP PREEMPT Mon Aug 4 19:04:45 CEST 2014 x86_64 GNU/Linux hal 
From: Robert Dodier <robert_dodier@us...>  20140822 23:09:05

From: Robert Dodier <robert_dodier@us...>  20140822 23:08:13

From: kcrisman <kcrisman@us...>  20140822 14:28:25

From: dan hayes <zmth@us...>  20140822 07:24:26

From: dan hayes <zmth@us...>  20140822 02:49:22

From: dan hayes <zmth@us...>  20140822 02:23:52
