# Just Launched: You can now import projects and releases from Google Code onto SourceForge

We are excited to release new functionality to enable a 1-click import from Google Code onto the Allura platform on SourceForge. You can import tickets, wikis, source, releases, and more with a few simple steps.

## matplotlib-users

 [Matplotlib-users] Handling data and creating arrays From: washakie - 2008-06-14 00:32:01 Hello, I've started to use the convention of making dictionaries to hold my datasets. But I haven't settled on an approach yet, and would like input from people for how they a) handle their arrays of data, and b) how to create pylab arrays from lists of lists, etc. What I generally have is: DataDict={var1:(x1,y1),var2:(x2,y2),var3:(x3,y3)} ; where the x and y's are generally lists. Now that's nice, because I can cycle through the DataDict.keys() to batch plot, etc. But how can I convert the whole dict into a single array (assuming the lengths are all equal)? I would like: myArray= x1a,y1a,x2a,y2a,x3a,y3a x1b,y1b,x2b,y2b,x3b,y3b ... x1,z,y1z,x2z,y2z,x3z,x3z Where: myArray[:,0]= x1a...x1z myArray[0,:]=x1a,y1a,x2a,y2a,x3a,y3a and so forth... Thanks! -- View this message in context: http://www.nabble.com/Handling-data-and-creating-arrays-tp17834278p17834278.html Sent from the matplotlib - users mailing list archive at Nabble.com.
 Re: [Matplotlib-users] Handling data and creating arrays From: Alan G Isaac - 2008-06-14 00:59:29 On Fri, 13 Jun 2008, washakie apparently wrote: > DataDict={var1:(x1,y1),var2:(x2,y2),var3:(x3,y3)} ; where > the x and y's are generally lists. > Now that's nice, because I can cycle through the DataDict.keys() to batch > plot, etc. But how can I convert the whole dict into > a single array (assuming the lengths are all equal)? Perhaps as below? (Or the transpose.) Alan Isaac >>> x1,y1,x2,y2 =np.random.random((4,20)) >>> data = dict(var1=(x1,y1), var2=(x2,y2)) >>> a = np.c_[[d for xy in data.values() for d in xy]] >>> a array([[ 0.66613738, 0.39154179, 0.52399694, 0.54694366, 0.52103419, 0.06023608, 0.03752003, 0.14947236, 0.56515257, 0.03980963, 0.08809146, 0.27861545, 0.62107655, 0.01718959, 0.40346171, 0.8438409 , 0.84710117, 0.49979344, 0.93686618, 0.07087815], [ 0.60181235, 0.1171198 , 0.40210686, 0.12248918, 0.73587718, 0.82907553, 0.04241232, 0.82834355, 0.89439919, 0.6477373 , 0.88697623, 0.12711133, 0.08061116, 0.96609631, 0.69845226, 0.32363392, 0.05150339, 0.05108155, 0.66766576, 0.93701382], [ 0.85075356, 0.12107294, 0.33732861, 0.22221564, 0.04249297, 0.54150883, 0.16414129, 0.93346553, 0.52176851, 0.24449367, 0.5526363 , 0.23359769, 0.40763005, 0.62820355, 0.70694987, 0.51204826, 0.15503887, 0.58975501, 0.32507773, 0.76876558], [ 0.54390474, 0.30364361, 0.8469127 , 0.79118699, 0.88471469, 0.98490908, 0.03890524, 0.52584869, 0.08669779, 0.42734853, 0.17571326, 0.33677747, 0.3046382 , 0.17856421, 0.26186241, 0.2688219 , 0.97639377, 0.85320323, 0.84821184, 0.31592768]]) >>>
 Re: [Matplotlib-users] Handling data and creating arrays From: washakie - 2008-06-14 01:19:01 Okay?? That does seem to work... I guess I'd better go read up on index_tricks.py ? Thanks. Alan G Isaac wrote: > >>>> x1,y1,x2,y2 =np.random.random((4,20)) >>>> data = dict(var1=(x1,y1), var2=(x2,y2)) >>>> a = np.c_[[d for xy in data.values() for d in xy]] >>>> a > array([[ 0.66613738, 0.39154179, 0.52399694, 0.54694366, 0.52103419, > 0.06023608, 0.03752003, 0.14947236, 0.56515257, 0.03980963, > 0.08809146, 0.27861545, 0.62107655, 0.01718959, 0.40346171, > 0.8438409 , 0.84710117, 0.49979344, 0.93686618, 0.07087815], > [ 0.60181235, 0.1171198 , 0.40210686, 0.12248918, 0.73587718, > 0.82907553, 0.04241232, 0.82834355, 0.89439919, 0.6477373 , > 0.88697623, 0.12711133, 0.08061116, 0.96609631, 0.69845226, > 0.32363392, 0.05150339, 0.05108155, 0.66766576, 0.93701382], > [ 0.85075356, 0.12107294, 0.33732861, 0.22221564, 0.04249297, > 0.54150883, 0.16414129, 0.93346553, 0.52176851, 0.24449367, > 0.5526363 , 0.23359769, 0.40763005, 0.62820355, 0.70694987, > 0.51204826, 0.15503887, 0.58975501, 0.32507773, 0.76876558], > [ 0.54390474, 0.30364361, 0.8469127 , 0.79118699, 0.88471469, > 0.98490908, 0.03890524, 0.52584869, 0.08669779, 0.42734853, > 0.17571326, 0.33677747, 0.3046382 , 0.17856421, 0.26186241, > 0.2688219 , 0.97639377, 0.85320323, 0.84821184, 0.31592768]]) >>>> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > ------------------------------------------------------------------------- > Check out the new SourceForge.net Marketplace. > It's the best place to buy or sell services for > just about anything Open Source. > http://sourceforge.net/services/buy/index.php > _______________________________________________ > Matplotlib-users mailing list > Matplotlib-users@... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > > -- View this message in context: http://www.nabble.com/Handling-data-and-creating-arrays-tp17834278p17834620.html Sent from the matplotlib - users mailing list archive at Nabble.com.
 Re: [Matplotlib-users] Handling data and creating arrays From: Chris.Barker - 2008-06-14 01:15:41 washakie wrote: > DataDict={var1:(x1,y1),var2:(x2,y2),var3:(x3,y3)} ; where the x and y's are > generally lists. You might be able to use numpy record arrays (recarray). There are lots of good reasons to use numpy arrays other than plotting. -Chris -- Christopher Barker, Ph.D. Oceanographer Emergency Response Division NOAA/NOS/OR&R (206) 526-6959 voice 7600 Sand Point Way NE (206) 526-6329 fax Seattle, WA 98115 (206) 526-6317 main reception Chris.Barker@...