You can subscribe to this list here.
2003 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}
(2) 
_{Oct}
(2) 
_{Nov}
(27) 
_{Dec}
(31) 

2004 
_{Jan}
(6) 
_{Feb}
(15) 
_{Mar}
(33) 
_{Apr}
(10) 
_{May}
(46) 
_{Jun}
(11) 
_{Jul}
(21) 
_{Aug}
(15) 
_{Sep}
(13) 
_{Oct}
(23) 
_{Nov}
(1) 
_{Dec}
(8) 
2005 
_{Jan}
(27) 
_{Feb}
(57) 
_{Mar}
(86) 
_{Apr}
(23) 
_{May}
(37) 
_{Jun}
(34) 
_{Jul}
(24) 
_{Aug}
(17) 
_{Sep}
(50) 
_{Oct}
(24) 
_{Nov}
(10) 
_{Dec}
(60) 
2006 
_{Jan}
(47) 
_{Feb}
(46) 
_{Mar}
(127) 
_{Apr}
(19) 
_{May}
(26) 
_{Jun}
(62) 
_{Jul}
(47) 
_{Aug}
(51) 
_{Sep}
(61) 
_{Oct}
(42) 
_{Nov}
(50) 
_{Dec}
(33) 
2007 
_{Jan}
(60) 
_{Feb}
(55) 
_{Mar}
(77) 
_{Apr}
(102) 
_{May}
(82) 
_{Jun}
(102) 
_{Jul}
(169) 
_{Aug}
(117) 
_{Sep}
(80) 
_{Oct}
(37) 
_{Nov}
(51) 
_{Dec}
(43) 
2008 
_{Jan}
(71) 
_{Feb}
(94) 
_{Mar}
(98) 
_{Apr}
(125) 
_{May}
(54) 
_{Jun}
(119) 
_{Jul}
(60) 
_{Aug}
(111) 
_{Sep}
(118) 
_{Oct}
(125) 
_{Nov}
(119) 
_{Dec}
(94) 
2009 
_{Jan}
(109) 
_{Feb}
(38) 
_{Mar}
(93) 
_{Apr}
(88) 
_{May}
(29) 
_{Jun}
(57) 
_{Jul}
(53) 
_{Aug}
(48) 
_{Sep}
(68) 
_{Oct}
(151) 
_{Nov}
(23) 
_{Dec}
(35) 
2010 
_{Jan}
(84) 
_{Feb}
(60) 
_{Mar}
(184) 
_{Apr}
(112) 
_{May}
(60) 
_{Jun}
(90) 
_{Jul}
(23) 
_{Aug}
(70) 
_{Sep}
(119) 
_{Oct}
(27) 
_{Nov}
(47) 
_{Dec}
(54) 
2011 
_{Jan}
(22) 
_{Feb}
(19) 
_{Mar}
(92) 
_{Apr}
(93) 
_{May}
(35) 
_{Jun}
(91) 
_{Jul}
(32) 
_{Aug}
(61) 
_{Sep}
(7) 
_{Oct}
(69) 
_{Nov}
(81) 
_{Dec}
(23) 
2012 
_{Jan}
(64) 
_{Feb}
(95) 
_{Mar}
(35) 
_{Apr}
(36) 
_{May}
(63) 
_{Jun}
(98) 
_{Jul}
(70) 
_{Aug}
(171) 
_{Sep}
(149) 
_{Oct}
(64) 
_{Nov}
(67) 
_{Dec}
(126) 
2013 
_{Jan}
(108) 
_{Feb}
(104) 
_{Mar}
(171) 
_{Apr}
(133) 
_{May}
(108) 
_{Jun}
(100) 
_{Jul}
(93) 
_{Aug}
(126) 
_{Sep}
(74) 
_{Oct}
(59) 
_{Nov}
(145) 
_{Dec}
(93) 
2014 
_{Jan}
(38) 
_{Feb}
(45) 
_{Mar}
(26) 
_{Apr}
(41) 
_{May}
(125) 
_{Jun}
(70) 
_{Jul}
(61) 
_{Aug}
(66) 
_{Sep}
(60) 
_{Oct}
(110) 
_{Nov}
(27) 
_{Dec}
(30) 
2015 
_{Jan}
(43) 
_{Feb}
(67) 
_{Mar}
(71) 
_{Apr}
(92) 
_{May}
(39) 
_{Jun}
(15) 
_{Jul}
(46) 
_{Aug}
(61) 
_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1

2

3
(4) 
4
(1) 
5
(1) 
6

7
(4) 
8
(1) 
9

10

11

12
(1) 
13

14

15

16

17

18
(4) 
19
(3) 
20

21

22
(4) 
23
(6) 
24

25

26
(5) 
27
(2) 
28
(6) 
29
(3) 
30
(1) 
31
(1) 





From: Roy Stogner <roystgnr@ic...>  20060728 22:19:58

This message should only apply to people using: BERNSTEIN elements with p > 2 CLOUGH elements HIERARCHIC elements with p > 2 SZABAB elements with p > 2 Currently, we choose an arbitrary orientation for certain basis functions by examining the relative global node numbering of the nodes on the appropriate element edge or face. I would like to change that procedure, so that instead we choose basis orientations based on the relative locations of those nodes. The advantage is that this will enable more optimizations in the FE class (cutting as much as 30% off the runtime of one of my application codes). The disadvantage is that if anyone has any saved solution .xda files using these elements, those solutions will become corrupted in future libMesh versions. If anyone has such saved solution files that they can't bear to part with or recalculate, email me and I'll try and work out a way to get them converted. If not (and oh, I'm hoping there's not), then just smile and look forward to your code running a little faster with libMesh 0.6.0.  Roy Stogner 
From: David Xu <dxu@my...>  20060728 22:17:09

Hi All, I was wondering how to write down an equation containing mixed derivative in libMesh's element matrix (Ke) building step? For exmaple, Uxx+Uyy+Uxy (U is 2nd order derivative) Thanks! David 
From: Roy Stogner <roystgnr@ic...>  20060728 21:48:24

On Wed, 26 Jul 2006, David Xu wrote: > On 7/26/06, Roy Stogner <roystgnr@...> wrote: > >> Loop over all the elements. On each geometric element, reinit your FE >> object with a grid quadrature rule whose order at least equals your >> polynomial degree. Get the XYZ coordinates and the solution value at >> each quadrature point, and output them. > > I do this after I load the eigenvector solutions back to libMesh, correct? Yes. > If I reinit FE object with a grid quadrature rule, how can Imake sure the > XYZ coordinates at each quadrature point are the ones correspondent to the > loaded eigenvectors? You don't. You're not plotting eigenvector coefficients, you're plotting eigenfunction points. Depending on the finite element space you use, your coefficients may correspond to function points, but they may also correspond to mixed second derivatives, projection magnitudes onto orthogonal function spaces, or the phase of the moon! So forget about trying to plot the coefficients themselves, and just worry about how to plot the function they represent. > Can I just ouput the xyz at each quadrature point at the element matrices > (Ke, Me) assembly step? Output them to a file and concatenate with the > eigenvector solutions? Will that work? No. >> That will output vertex and edge points multiple times, but the plot >> should look the same. If your elements are so large that the plot >> still looks faceted, use a quadrature rule with more points. > > Same question here, if I use a quadrature rule different from the one used > to assemble Ke, Me, will the xyz coordinates at the each quadrature point be > correctlycorrespondent to the eigenvector solutions with the size of global > DOFs? No, they won't. That's why you don't just get the xyz coordinates at each quadrature point, you get the solution value at each quadrature point too.  Roy 
From: David Xu <dxu@my...>  20060728 20:54:01

Hi All, I'm compiled libMesh with Slepc/ARPACK for generalized real eigenvalue problems. I was wondering if it's possible to a guess eigenvalue and ask ARPACK to search for solutions near or greater to the guess? The current options I know of are: LARGEST_MAGNITUDE, SMALLEST_MAGNITUDE, LARGEST_REAL, SMALLEST_REAL, LARGEST_IMAGINARY, SMALLEST_IMAGINARY Thanks, David 
From: <tim@ce...>  20060728 06:33:07

Dear all, During my work with libMesh, I encountered the following three problems with the MeshFunction class: 1.) The MeshFunction class cannot be instantiated since the clear() function is abstract. My workaround: I use a derived class MyMeshFunction in which I implement a clear() function that does nothing. 2.) The constructor that takes "unsigend int var" (rather than "std::vector<unsigend int> vars") initializes the member _system_vars with "std::vector<unsigned int>(var)" which is a vector of var components, all being zero, rather than "std::vector<unsigned int>(1,var)". My workaround is to use the other constructor. 3.) When calling the init() function, I get the message "ERROR: Already initialized! Will ignore this call...", although I definitely call this function only once. Can anyone comment on this? Best Regards, Tim 
From: Roy Stogner <roystgnr@ic...>  20060728 03:47:30

On Wed, 26 Jul 2006, David Xu wrote: > Thanks. The reason why I need xyz of the DOFs is that my system matrices are > solved by an eigenvalue solver outside libmesh and the size of the > eigenvector solution produced by the solver equals to the dimension of the > system matrices (or DOFs). I'd like to plot the eigenvector solutions, thus > I need to the correspondent xyz coordinates of each of the eigenvector value > for visualization purpose. No, you don't. Those XYZ coordinates *overlap*  each Hermite point will have 2 degrees of freedom in 1D, 4 in 2D, and 8 in 3D. You can throw away all but the first degree of freedom on each node and plot each piecewise cubic element as a piecewise linear, but if you want an accurate representation of your results you'll either need plotting software that can handle higher polynomials or you'll need to subdivide your mesh elements. The most general way you can do things is to load your eigenvector solutions back into libMesh (preferably into the same running process that gave you the original matrix, so there's no question of node renumbering). Then you can use the libMesh plotting functions (assuming you're happy with the limitations of those output formats) or use the libMesh FE objects to get an arbitrarily dense cloud of points for your own plotting software.  Roy Stogner 