From: Jarkko Lempiainen <altairx@gm...>  20081104 12:25:39

I don't think it's cubic Hermite curve since it's defined with 4 points rather than 2 points + their tangents. I think CatmullRom would be a closer match, but it doesn't go through all the points within t=[0, 1] interval. Cheers, Jarkko _____ From: Andrew Vidler [mailto:andrew.vidler@...] Sent: Tuesday, November 04, 2008 1:38 PM To: 'Game Development Algorithms' Subject: Re: [Algorithms] spline name I think you've just found a way of specifying the tangents for a cubic hermite curve? http://en.wikipedia.org/wiki/Cubic_Hermite_spline If you look at the formula for q(1/3) and q(2/3) then you'll get two equations in terms of the endpoints and the tangent at each endpoint  just rearranging for the tangents gives you two equations (one for each tangent) in terms of the endpoints and q(1/3), q(2/3)  which is what you've got. Unless there's some other characteristic of the spline that means it's not a Hermite? Cheers, Andrew. _____ From: Jarkko Lempiainen [mailto:altairx@...] Sent: 04 November 2008 11:10 To: 'Game Development Algorithms' Subject: [Algorithms] spline name Hi, Does anyone know if there is a name for a cubic spline which goes through all the defined control points p0..p3 in the interval t=[0, 1], so that q(0)=p0, q(1/3)=p1, q(2/3)=p2 and q(1)=p3? I solved the basis matrix for it, but don't know what's the name of the wheel I just reinvented ;) Cheers, Jarkko ______________________________________________________________________ This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email ______________________________________________________________________ 