Work at SourceForge, help us to make it a better place! We have an immediate need for a Support Technician in our San Francisco or Denver office.

Close

[e90b2f]: src / lsp / loop2.lsp Maximize Restore History

Download this file

loop2.lsp    2303 lines (2007 with data), 89.4 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
;;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: SYSTEM -*-
;;;;
;;; -*- Mode: LISP; Syntax: Common-lisp; Base: 10; Lowercase:T -*-
;;;>
;;;> Portions of LOOP are Copyright (c) 1986 by the Massachusetts Institute of Technology.
;;;> All Rights Reserved.
;;;>
;;;> Permission to use, copy, modify and distribute this software and its
;;;> documentation for any purpose and without fee is hereby granted,
;;;> provided that the M.I.T. copyright notice appear in all copies and that
;;;> both that copyright notice and this permission notice appear in
;;;> supporting documentation. The names "M.I.T." and "Massachusetts
;;;> Institute of Technology" may not be used in advertising or publicity
;;;> pertaining to distribution of the software without specific, written
;;;> prior permission. Notice must be given in supporting documentation that
;;;> copying distribution is by permission of M.I.T. M.I.T. makes no
;;;> representations about the suitability of this software for any purpose.
;;;> It is provided "as is" without express or implied warranty.
;;;>
;;;> Massachusetts Institute of Technology
;;;> 77 Massachusetts Avenue
;;;> Cambridge, Massachusetts 02139
;;;> United States of America
;;;> +1-617-253-1000
;;;>
;;;> Portions of LOOP are Copyright (c) 1989, 1990, 1991, 1992 by Symbolics, Inc.
;;;> All Rights Reserved.
;;;>
;;;> Permission to use, copy, modify and distribute this software and its
;;;> documentation for any purpose and without fee is hereby granted,
;;;> provided that the Symbolics copyright notice appear in all copies and
;;;> that both that copyright notice and this permission notice appear in
;;;> supporting documentation. The name "Symbolics" may not be used in
;;;> advertising or publicity pertaining to distribution of the software
;;;> without specific, written prior permission. Notice must be given in
;;;> supporting documentation that copying distribution is by permission of
;;;> Symbolics. Symbolics makes no representations about the suitability of
;;;> this software for any purpose. It is provided "as is" without express
;;;> or implied warranty.
;;;>
;;;> Symbolics, CLOE Runtime, and Minima are trademarks, and CLOE, Genera,
;;;> and Zetalisp are registered trademarks of Symbolics, Inc.
;;;>
;;;> Symbolics, Inc.
;;;> 8 New England Executive Park, East
;;;> Burlington, Massachusetts 01803
;;;> United States of America
;;;> +1-617-221-1000
;; $aclHeader: loop.cl,v 1.5 91/12/04 01:13:48 cox acl4_1 $
#+cmu
(ext:file-comment
"$Header$")
;;;; LOOP Iteration Macro
#+allegro
(in-package :excl)
#+ecl
(in-package "SI")
#-(or allegro ecl)
(in-package :ansi-loop)
#-ecl
(provide :loop)
#+Cloe-Runtime ;Don't ask.
(car (push "%Z% %M% %I% %E% %U%" system::*module-identifications*))
;;; Technology.
;;;
;;; The LOOP iteration macro is one of a number of pieces of code
;;; originally developed at MIT for which free distribution has been
;;; permitted, as long as the code is not sold for profit, and as long
;;; as notification of MIT's interest in the code is preserved.
;;;
;;; This version of LOOP, which is almost entirely rewritten both as
;;; clean-up and to conform with the ANSI Lisp LOOP standard, started
;;; life as MIT LOOP version 829 (which was a part of NIL, possibly
;;; never released).
;;;
;;; A "light revision" was performed by me (Glenn Burke) while at
;;; Palladian Software in April 1986, to make the code run in Common
;;; Lisp. This revision was informally distributed to a number of
;;; people, and was sort of the "MIT" version of LOOP for running in
;;; Common Lisp.
;;;
;;; A later more drastic revision was performed at Palladian perhaps a
;;; year later. This version was more thoroughly Common Lisp in style,
;;; with a few miscellaneous internal improvements and extensions. I
;;; have lost track of this source, apparently never having moved it to
;;; the MIT distribution point. I do not remember if it was ever
;;; distributed.
;;;
;;; This revision for the ANSI standard is based on the code of my April
;;; 1986 version, with almost everything redesigned and/or rewritten.
;;; The design of this LOOP is intended to permit, using mostly the same
;;; kernel of code, up to three different "loop" macros:
;;;
;;; (1) The unextended, unextensible ANSI standard LOOP;
;;;
;;; (2) A clean "superset" extension of the ANSI LOOP which provides
;;; functionality similar to that of the old LOOP, but "in the style of"
;;; the ANSI LOOP. For instance, user-definable iteration paths, with a
;;; somewhat cleaned-up interface.
;;;
;;; (3) Extensions provided in another file which can make this LOOP
;;; kernel behave largely compatibly with the Genera-vintage LOOP macro,
;;; with only a small addition of code (instead of two whole, separate,
;;; LOOP macros).
;;;
;;; Each of the above three LOOP variations can coexist in the same LISP
;;; environment.
;;;
;;;; Miscellaneous Environment Things
(defmacro loop-unsafe (&rest x)
`(locally (declare (ext:assume-right-type)) ,@x))
;;;The LOOP-Prefer-POP feature makes LOOP generate code which "prefers" to use POP or
;;; its obvious expansion (prog1 (car x) (setq x (cdr x))). Usually this involves
;;; shifting fenceposts in an iteration or series of carcdr operations. This is
;;; primarily recognized in the list iterators (FOR .. {IN,ON}), and LOOP's
;;; destructuring setq code.
(eval-when (compile load eval)
#+(or Genera Minima) (pushnew :LOOP-Prefer-POP *features*)
)
;;; The uses of this macro are retained in the CL version of loop, in
;;; case they are needed in a particular implementation. Originally
;;; dating from the use of the Zetalisp COPYLIST* function, this is used
;;; in situations where, were cdr-coding in use, having cdr-NIL at the
;;; end of the list might be suboptimal because the end of the list will
;;; probably be RPLACDed and so cdr-normal should be used instead.
(defmacro loop-copylist* (l)
#+Genera `(lisp:copy-list ,l nil t) ; arglist = (list &optional area force-dotted)
;;Explorer??
#-Genera `(copy-list ,l)
)
(defparameter *loop-real-data-type* 'real)
(defun loop-optimization-quantities (env)
(declare (si::c-local))
;; The ANSI conditionalization here is for those lisps that implement
;; DECLARATION-INFORMATION (from cleanup SYNTACTIC-ENVIRONMENT-ACCESS).
;; It is really commentary on how this code could be written. I don't
;; actually expect there to be an ANSI #+-conditional -- it should be
;; replaced with the appropriate conditional name for your
;; implementation/dialect.
(declare #-ANSI (ignore env)
#+Genera (values speed space safety compilation-speed debug))
#+ANSI (let ((stuff (declaration-information 'optimize env)))
(values (or (cdr (assoc 'speed stuff)) 1)
(or (cdr (assoc 'space stuff)) 1)
(or (cdr (assoc 'safety stuff)) 1)
(or (cdr (assoc 'compilation-speed stuff)) 1)
(or (cdr (assoc 'debug stuff)) 1)))
#+CLOE-Runtime (values compiler::time compiler::space
compiler::safety compiler::compilation-speed 1)
#-(or ANSI CLOE-Runtime) (values 1 1 1 1 1))
;;; The following form takes a list of variables and a form which presumably
;;; references those variables, and wraps it somehow so that the compiler does not
;;; consider those variables have been referenced. The intent of this is that
;;; iteration variables can be flagged as unused by the compiler, e.g. I in
;;; (loop for i from 1 to 10 do (print t)), since we will tell it when a usage
;;; of it is "invisible" or "not to be considered".
;;;We implicitly assume that a setq does not count as a reference. That is, the
;;; kind of form generated for the above loop construct to step I, simplified, is
;;; `(SETQ I ,(HIDE-VARIABLE-REFERENCES '(I) '(1+ I))).
(defun hide-variable-references (variable-list form)
(declare #-Genera (ignore variable-list) (si::c-local))
#+Genera (if variable-list `(compiler:invisible-references ,variable-list ,form) form)
#-Genera form)
;;; The following function takes a flag, a variable, and a form which presumably
;;; references that variable, and wraps it somehow so that the compiler does not
;;; consider that variable to have been referenced. The intent of this is that
;;; iteration variables can be flagged as unused by the compiler, e.g. I in
;;; (loop for i from 1 to 10 do (print t)), since we will tell it when a usage
;;; of it is "invisible" or "not to be considered".
;;;We implicitly assume that a setq does not count as a reference. That is, the
;;; kind of form generated for the above loop construct to step I, simplified, is
;;; `(SETQ I ,(HIDE-VARIABLE-REFERENCES T 'I '(1+ I))).
;;;Certain cases require that the "invisibility" of the reference be conditional upon
;;; something. This occurs in cases of "named" variables (the USING clause). For instance,
;;; we want IDX in (LOOP FOR E BEING THE VECTOR-ELEMENTS OF V USING (INDEX IDX) ...)
;;; to be "invisible" when it is stepped, so that the user gets informed if IDX is
;;; not referenced. However, if no USING clause is present, we definitely do not
;;; want to be informed that some random gensym is not used.
;;;It is easier for the caller to do this conditionally by passing a flag (which
;;; happens to be the second value of NAMED-VARIABLE, q.v.) to this function than
;;; for all callers to contain the conditional invisibility construction.
(defun hide-variable-reference (really-hide variable form)
(declare #-Genera (ignore really-hide variable) (si::c-local))
#+Genera (if (and really-hide variable (atom variable)) ;Punt on destructuring patterns
`(compiler:invisible-references (,variable) ,form)
form)
#-Genera form)
;;;; List Collection Macrology
(defmacro with-loop-list-collection-head ((head-var tail-var &optional user-head-var)
&body body)
;; TI? Exploder?
#+LISPM (let ((head-place (or user-head-var head-var)))
`(let* ((,head-place nil)
(,tail-var
,(hide-variable-reference
user-head-var user-head-var
`(progn #+Genera (scl:locf ,head-place)
#-Genera (system:variable-location ,head-place)))))
,@body))
#-LISPM (let ((l (and user-head-var (list (list user-head-var nil)))))
#+CLOE `(sys::with-stack-list* (,head-var nil nil)
(let ((,tail-var ,head-var) ,@l)
,@body))
#-CLOE `(let* ((,head-var (list nil)) (,tail-var ,head-var) ,@l)
,@body)))
(defmacro loop-collect-rplacd (&environment env
(head-var tail-var &optional user-head-var) form)
(declare
#+LISPM (ignore head-var user-head-var) ;use locatives, unconditionally update through the tail.
)
(setq form (macroexpand form env))
(flet ((cdr-wrap (form n)
(declare (fixnum n))
(do () ((<= n 4) (setq form `(,(case n
(1 'cdr)
(2 'cddr)
(3 'cdddr)
(4 'cddddr))
,form)))
(setq form `(cddddr ,form) n (- n 4)))))
(let ((tail-form form) (ncdrs nil))
;;Determine if the form being constructed is a list of known length.
(when (consp form)
(cond ((eq (car form) 'list)
(setq ncdrs (1- (length (cdr form))))
;; Because the last element is going to be RPLACDed,
;; we don't want the cdr-coded implementations to use
;; cdr-nil at the end (which would just force copying
;; the whole list again).
#+LISPM (setq tail-form `(list* ,@(cdr form) nil)))
((member (car form) '(list* cons))
(when (and (cddr form) (member (car (last form)) '(nil 'nil)))
(setq ncdrs (- (length (cdr form)) 2))))))
(let ((answer
(cond ((null ncdrs)
`(when (setf (cdr ,tail-var) ,tail-form)
(setq ,tail-var (last (cdr ,tail-var)))))
((< ncdrs 0) (return-from loop-collect-rplacd nil))
((= ncdrs 0)
;; Here we have a choice of two idioms:
;; (rplacd tail (setq tail tail-form))
;; (setq tail (setf (cdr tail) tail-form)).
;;Genera and most others I have seen do better with the former.
`(rplacd ,tail-var (setq ,tail-var ,tail-form)))
(t `(setq ,tail-var ,(cdr-wrap `(setf (cdr ,tail-var) ,tail-form)
ncdrs))))))
;;If not using locatives or something similar to update the user's
;; head variable, we've got to set it... It's harmless to repeatedly set it
;; unconditionally, and probably faster than checking.
#-LISPM (when user-head-var
(setq answer `(progn ,answer (setq ,user-head-var (cdr ,head-var)))))
answer))))
(defmacro loop-collect-answer (head-var &optional user-head-var)
(or user-head-var
(progn
;;If we use locatives to get tail-updating to update the head var,
;; then the head var itself contains the answer. Otherwise we
;; have to cdr it.
#+LISPM head-var
#-LISPM `(cdr ,head-var))))
;;;; Maximization Technology
#|
The basic idea of all this minimax randomness here is that we have to
have constructed all uses of maximize and minimize to a particular
"destination" before we can decide how to code them. The goal is to not
have to have any kinds of flags, by knowing both that (1) the type is
something which we can provide an initial minimum or maximum value for
and (2) know that a MAXIMIZE and MINIMIZE are not being combined.
SO, we have a datastructure which we annotate with all sorts of things,
incrementally updating it as we generate loop body code, and then use
a wrapper and internal macros to do the coding when the loop has been
constructed.
|#
(defstruct (loop-minimax
#+ecl (:type vector)
(:constructor make-loop-minimax-internal)
#+nil (:copier nil)
#+nil (:predicate nil))
answer-variable
type
temp-variable
flag-variable
operations
infinity-data)
(defparameter *loop-minimax-type-infinities-alist*
;; This is the sort of value this should take on for a Lisp that has
;; "eminently usable" infinities. n.b. there are neither constants nor
;; printed representations for infinities defined by CL.
;; This grotesque read-from-string below is to help implementations
;; which croak on the infinity character when it appears in a token, even
;; conditionalized out.
; #+Genera
; '#.(read-from-string
; "((fixnum most-positive-fixnum most-negative-fixnum)
; (short-float +1s -1s)
; (single-float +1f -1f)
; (double-float +1d -1d)
; (long-float +1l -1l))")
;;This is how the alist should look for a lisp that has no infinities. In
;; that case, MOST-POSITIVE-x-FLOAT really IS the most positive.
#+(or CLOE-Runtime Minima)
'((fixnum most-positive-fixnum most-negative-fixnum)
(short-float most-positive-short-float most-negative-short-float)
(single-float most-positive-single-float most-negative-single-float)
(double-float most-positive-double-float most-negative-double-float)
(long-float most-positive-long-float most-negative-long-float))
;; CMUCL has infinities so let's use them.
#+CMU
'((fixnum most-positive-fixnum most-negative-fixnum)
(short-float ext:single-float-positive-infinity ext:single-float-negative-infinity)
(single-float ext:single-float-positive-infinity ext:single-float-negative-infinity)
(double-float ext:double-float-positive-infinity ext:double-float-negative-infinity)
(long-float ext:long-float-positive-infinity ext:long-float-negative-infinity))
;; If we don't know, then we cannot provide "infinite" initial values for any of the
;; types but FIXNUM:
#-(or Genera CLOE-Runtime Minima CMU)
'((fixnum most-positive-fixnum most-negative-fixnum))
)
(defun make-loop-minimax (answer-variable type)
(declare (si::c-local))
(let ((infinity-data (cdr (assoc type *loop-minimax-type-infinities-alist* :test #'subtypep))))
(make-loop-minimax-internal
:answer-variable answer-variable
:type type
:temp-variable (gensym "LOOP-MAXMIN-TEMP-")
:flag-variable (and (not infinity-data) (gensym "LOOP-MAXMIN-FLAG-"))
:operations nil
:infinity-data infinity-data)))
(defun loop-note-minimax-operation (operation minimax)
(declare (si::c-local))
(pushnew (truly-the symbol operation) (loop-minimax-operations minimax))
(when (and (cdr (loop-minimax-operations minimax))
(not (loop-minimax-flag-variable minimax)))
(setf (loop-minimax-flag-variable minimax) (gensym "LOOP-MAXMIN-FLAG-")))
operation)
(defmacro with-minimax-value (lm &body body)
(let ((init (loop-typed-init (loop-minimax-type lm)))
(which (car (loop-minimax-operations lm)))
(infinity-data (loop-minimax-infinity-data lm))
(answer-var (loop-minimax-answer-variable lm))
(temp-var (loop-minimax-temp-variable lm))
(flag-var (loop-minimax-flag-variable lm))
(type (loop-minimax-type lm)))
(if flag-var
`(let ((,answer-var ,init) (,temp-var ,init) (,flag-var nil))
(declare (type ,type ,answer-var ,temp-var))
,@body)
`(let ((,answer-var ,(if (eq which 'min) (first infinity-data) (second infinity-data)))
(,temp-var ,init))
(declare (type ,type ,answer-var ,temp-var))
,@body))))
(defmacro loop-accumulate-minimax-value (lm operation form)
(let* ((answer-var (loop-minimax-answer-variable lm))
(temp-var (loop-minimax-temp-variable lm))
(flag-var (loop-minimax-flag-variable lm))
(test
(hide-variable-reference
t (loop-minimax-answer-variable lm)
`(,(ecase operation
(min '<)
(max '>))
,temp-var ,answer-var))))
`(progn
(setq ,temp-var ,form)
(when ,(if flag-var `(or (not ,flag-var) ,test) test)
(setq ,@(and flag-var `(,flag-var t))
,answer-var ,temp-var)))))
;;;; Loop Keyword Tables
#|
LOOP keyword tables are hash tables string keys and a test of EQUAL.
The actual descriptive/dispatch structure used by LOOP is called a "loop
universe" contains a few tables and parameterizations. The basic idea is
that we can provide a non-extensible ANSI-compatible loop environment,
an extensible ANSI-superset loop environment, and (for such environments
as CLOE) one which is "sufficiently close" to the old Genera-vintage
LOOP for use by old user programs without requiring all of the old LOOP
code to be loaded.
|#
;;;; Token Hackery
;;;Compare two "tokens". The first is the frob out of *LOOP-SOURCE-CODE*,
;;; the second a symbol to check against.
(defun loop-tequal (x1 x2)
(declare (si::c-local))
(and (symbolp x1) (string= x1 x2)))
(defun loop-tassoc (kwd alist)
(declare (si::c-local))
(and (symbolp kwd) (assoc kwd alist :test #'string=)))
(defun loop-tmember (kwd list)
(declare (si::c-local))
(and (symbolp kwd) (member kwd list :test #'string=)))
(defun loop-lookup-keyword (loop-token table)
(declare (si::c-local))
(and (symbolp loop-token)
(values (gethash (symbol-name loop-token) table))))
(defmacro loop-store-table-data (symbol table datum)
`(setf (gethash (symbol-name ,symbol) ,table) ,datum))
(defstruct (loop-universe
#+ecl (:type vector)
#-ecl (:print-function print-loop-universe)
#+nil (:copier nil)
#+nil (:predicate nil))
keywords ;hash table, value = (fn-name . extra-data).
iteration-keywords ;hash table, value = (fn-name . extra-data).
for-keywords ;hash table, value = (fn-name . extra-data).
path-keywords ;hash table, value = (fn-name . extra-data).
type-symbols ;hash table of type SYMBOLS, test EQ, value = CL type specifier.
type-keywords ;hash table of type STRINGS, test EQUAL, value = CL type spec.
ansi ;NIL, T, or :EXTENDED.
implicit-for-required ;see loop-hack-iteration
)
#-ecl
(defun print-loop-universe (u stream level)
(declare (ignore level))
(let ((str (case (loop-universe-ansi u)
((nil) "Non-ANSI")
((t) "ANSI")
(:extended "Extended-ANSI")
(t (loop-universe-ansi u)))))
;;Cloe could be done with the above except for bootstrap lossage...
#+CLOE
(format stream "#<~S ~A ~X>" (type-of u) str (sys::address-of u))
#+Genera ; This is reallly the ANSI definition.
(print-unreadable-object (u stream :type t :identity t)
(princ str stream))
#-(or Genera CLOE)
(format stream "#<~S ~A>" (type-of u) str)
))
;;;This is the "current" loop context in use when we are expanding a
;;;loop. It gets bound on each invocation of LOOP.
(defvar *loop-universe*)
(defun make-standard-loop-universe (&key keywords for-keywords iteration-keywords path-keywords
type-keywords type-symbols ansi)
(declare (si::c-local))
#-(and CLOE Source-Bootstrap ecl) (check-type ansi (member nil t :extended))
(flet ((maketable (entries)
(let* ((size (length entries))
(ht (make-hash-table :size (if (< size 10) 10 size) :test #'equal)))
(dolist (x entries) (setf (gethash (symbol-name (car x)) ht) (cadr x)))
ht)))
(make-loop-universe
:keywords (maketable keywords)
:for-keywords (maketable for-keywords)
:iteration-keywords (maketable iteration-keywords)
:path-keywords (maketable path-keywords)
:ansi ansi
:implicit-for-required (not (null ansi))
:type-keywords (maketable type-keywords)
:type-symbols (let* ((size (length type-symbols))
(ht (make-hash-table :size (if (< size 10) 10 size) :test #'eq)))
(dolist (x type-symbols)
(if (atom x) (setf (gethash x ht) x) (setf (gethash (car x) ht) (cadr x))))
ht))))
;;;; Setq Hackery
(defparameter *loop-destructuring-hooks*
nil
"If not NIL, this must be a list of two things:
a LET-like macro, and a SETQ-like macro, which perform LOOP-style destructuring.")
(defun loop-make-psetq (frobs)
(declare (si::c-local))
(and frobs
(loop-make-desetq
(list (car frobs)
(if (null (cddr frobs)) (cadr frobs)
`(prog1 ,(cadr frobs)
,(loop-make-psetq (cddr frobs))))))))
(defun loop-make-desetq (var-val-pairs)
(declare (si::c-local))
(if (null var-val-pairs)
nil
(cons (if *loop-destructuring-hooks*
(cadr *loop-destructuring-hooks*)
'loop-really-desetq)
var-val-pairs)))
(defparameter *loop-desetq-temporary*
(make-symbol "LOOP-DESETQ-TEMP"))
(defmacro loop-really-desetq (&environment env &rest var-val-pairs)
(labels ((find-non-null (var)
;; see if there's any non-null thing here
;; recurse if the list element is itself a list
(do ((tail var)) ((not (consp tail)) tail)
(when (find-non-null (pop tail)) (return t))))
(loop-desetq-internal (var val &optional temp)
;; if the value is declared 'unsafe', then the assignemnt
;; is also unsafe.
(when (and (consp val)
(eq (first val) 'LOOP-UNSAFE))
(let ((forms (rest val)))
(setf forms (if (rest forms) `(progn ,@forms) (first forms)))
(return-from loop-desetq-internal
`((LOOP-UNSAFE ,@(loop-desetq-internal var forms))))))
;; returns a list of actions to be performed
(typecase var
(null
(when (consp val)
;; don't lose possible side-effects
(if (eq (car val) 'prog1)
;; these can come from psetq or desetq below.
;; throw away the value, keep the side-effects.
;;Special case is for handling an expanded POP.
(mapcan #'(lambda (x)
(and (consp x)
(or (not (eq (car x) 'car))
(not (symbolp (cadr x)))
(not (symbolp (setq x (macroexpand x env)))))
(cons x nil)))
(cdr val))
`(,val))))
(cons
(let* ((car (car var))
(cdr (cdr var))
(car-non-null (find-non-null car))
(cdr-non-null (find-non-null cdr)))
(when (or car-non-null cdr-non-null)
(if cdr-non-null
(let* ((temp-p temp)
(temp (or temp *loop-desetq-temporary*))
(body #+LOOP-Prefer-POP `(,@(loop-desetq-internal
car
`(prog1 (car ,temp)
(setq ,temp (cdr ,temp))))
,@(loop-desetq-internal cdr temp temp))
#-LOOP-Prefer-POP `(,@(loop-desetq-internal car `(car ,temp))
(setq ,temp (cdr ,temp))
,@(loop-desetq-internal cdr temp temp))))
(if temp-p
`(,@(unless (eq temp val)
`((setq ,temp ,val)))
,@body)
`((let ((,temp ,val))
,@body))))
;; no cdring to do
(loop-desetq-internal car `(car ,val) temp)))))
(otherwise
(unless (eq var val)
`((setq ,var ,val)))))))
(do ((actions))
((null var-val-pairs)
(if (null (cdr actions)) (car actions) `(progn ,@(nreverse actions))))
(setq actions (revappend
(loop-desetq-internal (pop var-val-pairs) (pop var-val-pairs))
actions)))))
;;;; LOOP-local variables
;;;This is the "current" pointer into the LOOP source code.
(defvar *loop-source-code*)
;;;This is the pointer to the original, for things like NAMED that
;;;insist on being in a particular position
(defvar *loop-original-source-code*)
;;;This is *loop-source-code* as of the "last" clause. It is used
;;;primarily for generating error messages (see loop-error, loop-warn).
(defvar *loop-source-context*)
;;;List of names for the LOOP, supplied by the NAMED clause.
(defvar *loop-names*)
;;;The macroexpansion environment given to the macro.
(defvar *loop-macro-environment*)
;;;This holds variable names specified with the USING clause.
;;; See LOOP-NAMED-VARIABLE.
(defvar *loop-named-variables*)
;;; LETlist-like list being accumulated for one group of parallel bindings.
(defvar *loop-variables*)
;;;List of declarations being accumulated in parallel with
;;;*loop-variables*.
(defvar *loop-declarations*)
;;;Used by LOOP for destructuring binding, if it is doing that itself.
;;; See loop-make-variable.
(defvar *loop-desetq-crocks*)
;;; List of wrapping forms, innermost first, which go immediately inside
;;; the current set of parallel bindings being accumulated in
;;; *loop-variables*. The wrappers are appended onto a body. E.g.,
;;; this list could conceivably has as its value ((with-open-file (g0001
;;; g0002 ...))), with g0002 being one of the bindings in
;;; *loop-variables* (this is why the wrappers go inside of the variable
;;; bindings).
(defvar *loop-wrappers*)
;;;This accumulates lists of previous values of *loop-variables* and the
;;;other lists above, for each new nesting of bindings. See
;;;loop-bind-block.
(defvar *loop-bind-stack*)
;;;This is a LOOP-global variable for the (obsolete) NODECLARE clause
;;;which inhibits LOOP from actually outputting a type declaration for
;;;an iteration (or any) variable.
(defvar *loop-nodeclare*)
;;;This is simply a list of LOOP iteration variables, used for checking
;;;for duplications.
(defvar *loop-iteration-variables*)
;;;List of prologue forms of the loop, accumulated in reverse order.
(defvar *loop-prologue*)
(defvar *loop-before-loop*)
(defvar *loop-body*)
(defvar *loop-after-body*)
;;;This is T if we have emitted any body code, so that iteration driving
;;;clauses can be disallowed. This is not strictly the same as
;;;checking *loop-body*, because we permit some clauses such as RETURN
;;;to not be considered "real" body (so as to permit the user to "code"
;;;an abnormal return value "in loop").
(defvar *loop-emitted-body*)
;;;List of epilogue forms (supplied by FINALLY generally), accumulated
;;; in reverse order.
(defvar *loop-epilogue*)
;;;List of epilogue forms which are supplied after the above "user"
;;;epilogue. "normal" termination return values are provide by putting
;;;the return form in here. Normally this is done using
;;;loop-emit-final-value, q.v.
(defvar *loop-after-epilogue*)
;;;The "culprit" responsible for supplying a final value from the loop.
;;;This is so loop-emit-final-value can moan about multiple return
;;;values being supplied.
(defvar *loop-final-value-culprit*)
;;;If not NIL, we are in some branch of a conditional. Some clauses may
;;;be disallowed.
(defvar *loop-inside-conditional*)
;;;If not NIL, this is a temporary bound around the loop for holding the
;;;temporary value for "it" in things like "when (f) collect it". It
;;;may be used as a supertemporary by some other things.
(defvar *loop-when-it-variable*)
;;;Sometimes we decide we need to fold together parts of the loop, but
;;;some part of the generated iteration code is different for the first
;;;and remaining iterations. This variable will be the temporary which
;;;is the flag used in the loop to tell whether we are in the first or
;;;remaining iterations.
(defvar *loop-never-stepped-variable*)
;;;List of all the value-accumulation descriptor structures in the loop.
;;; See loop-get-collection-info.
(defvar *loop-collection-cruft*) ; for multiple COLLECTs (etc)
;;;; Code Analysis Stuff
(defun loop-constant-fold-if-possible (form &optional expected-type)
(declare (si::c-local))
#+Genera (declare (values new-form constantp constant-value))
(let ((new-form form) (constantp nil) (constant-value nil))
#+Genera (setq new-form (compiler:optimize-form form *loop-macro-environment*
:repeat t
:do-macro-expansion t
:do-named-constants t
:do-inline-forms t
:do-optimizers t
:do-constant-folding t
:do-function-args t)
constantp (constantp new-form *loop-macro-environment*)
constant-value (and constantp (lt:evaluate-constant new-form *loop-macro-environment*)))
#-Genera (when (setq constantp (constantp new-form))
(setq constant-value (eval new-form)))
(when (and constantp expected-type)
(unless (typep constant-value expected-type)
(loop-warn "The form ~S evaluated to ~S, which was not of the anticipated type ~S."
form constant-value expected-type)
(setq constantp nil constant-value nil)))
(values new-form constantp constant-value)))
(defun loop-constantp (form)
#+Genera (constantp form *loop-macro-environment*)
#-Genera (constantp form))
;;;; LOOP Iteration Optimization
(defparameter *loop-duplicate-code*
nil)
(defparameter *loop-iteration-flag-variable*
(make-symbol "LOOP-NOT-FIRST-TIME"))
(defun loop-code-duplication-threshold (env)
(declare (si::c-local))
(multiple-value-bind (speed space) (loop-optimization-quantities env)
(+ 40 (* (- speed space) 10))))
(defmacro loop-body (&environment env
prologue
before-loop
main-body
after-loop
epilogue
&aux rbefore rafter flagvar)
(unless (= (length before-loop) (length after-loop))
(error "LOOP-BODY called with non-synched before- and after-loop lists."))
;;All our work is done from these copies, working backwards from the end:
(setq rbefore (reverse before-loop) rafter (reverse after-loop))
(labels ((psimp (l)
(let ((ans nil))
(dolist (x l)
(when x
(push x ans)
(when (and (consp x) (member (car x) '(go return return-from)))
(return nil))))
(nreverse ans)))
(pify (l) (if (null (cdr l)) (car l) `(progn ,@l)))
(makebody ()
(let ((form `(tagbody
,@(psimp (append prologue (nreverse rbefore)))
next-loop
,@(psimp (append main-body (nreconc rafter `((go next-loop)))))
end-loop
,@(psimp epilogue))))
(if flagvar `(let ((,flagvar nil)) ,form) form))))
(when (or *loop-duplicate-code* (not rbefore))
(return-from loop-body (makebody)))
;; This outer loop iterates once for each not-first-time flag test generated
;; plus once more for the forms that don't need a flag test
(do ((threshold (loop-code-duplication-threshold env))) (nil)
(declare (fixnum threshold))
;; Go backwards from the ends of before-loop and after-loop merging all the equivalent
;; forms into the body.
(do () ((or (null rbefore) (not (equal (car rbefore) (car rafter)))))
(push (pop rbefore) main-body)
(pop rafter))
(unless rbefore (return (makebody)))
;; The first forms in rbefore & rafter (which are the chronologically
;; last forms in the list) differ, therefore they cannot be moved
;; into the main body. If everything that chronologically precedes
;; them either differs or is equal but is okay to duplicate, we can
;; just put all of rbefore in the prologue and all of rafter after
;; the body. Otherwise, there is something that is not okay to
;; duplicate, so it and everything chronologically after it in
;; rbefore and rafter must go into the body, with a flag test to
;; distinguish the first time around the loop from later times.
;; What chronologically precedes the non-duplicatable form will
;; be handled the next time around the outer loop.
(do ((bb rbefore (cdr bb)) (aa rafter (cdr aa)) (lastdiff nil) (count 0) (inc nil))
((null bb) (return-from loop-body (makebody))) ;Did it.
(cond ((not (equal (car bb) (car aa))) (setq lastdiff bb count 0))
((or (not (setq inc (estimate-code-size (car bb) env)))
(> (incf count inc) threshold))
;; Ok, we have found a non-duplicatable piece of code. Everything
;; chronologically after it must be in the central body.
;; Everything chronologically at and after lastdiff goes into the
;; central body under a flag test.
(let ((then nil) (else nil))
(do () (nil)
(push (pop rbefore) else)
(push (pop rafter) then)
(when (eq rbefore (cdr lastdiff)) (return)))
(unless flagvar
(push `(setq ,(setq flagvar *loop-iteration-flag-variable*) t) else))
(push `(if ,flagvar ,(pify (psimp then)) ,(pify (psimp else)))
main-body))
;; Everything chronologically before lastdiff until the non-duplicatable form (car bb)
;; is the same in rbefore and rafter so just copy it into the body
(do () (nil)
(pop rafter)
(push (pop rbefore) main-body)
(when (eq rbefore (cdr bb)) (return)))
(return)))))))
(defun duplicatable-code-p (expr env)
(declare (si::c-local))
(if (null expr) 0
(let ((ans (estimate-code-size expr env)))
(declare (fixnum ans))
;; Use (DECLARATION-INFORMATION 'OPTIMIZE ENV) here to get an alist of
;; optimize quantities back to help quantify how much code we are willing to
;; duplicate.
ans)))
(defparameter *special-code-sizes*
'((return 0) (progn 0)
(null 1) (not 1) (eq 1) (car 1) (cdr 1)
(when 1) (unless 1) (if 1)
(caar 2) (cadr 2) (cdar 2) (cddr 2)
(caaar 3) (caadr 3) (cadar 3) (caddr 3) (cdaar 3) (cdadr 3) (cddar 3) (cdddr 3)
(caaaar 4) (caaadr 4) (caadar 4) (caaddr 4)
(cadaar 4) (cadadr 4) (caddar 4) (cadddr 4)
(cdaaar 4) (cdaadr 4) (cdadar 4) (cdaddr 4)
(cddaar 4) (cddadr 4) (cdddar 4) (cddddr 4)))
(defparameter *estimate-code-size-punt*
'(block
do do* dolist
flet
labels lambda let let* locally
macrolet multiple-value-bind
prog prog*
symbol-macrolet
tagbody
unwind-protect
with-open-file))
(defun destructuring-size (x)
(declare (si::c-local))
(do ((x x (cdr x)) (n 0 (+ (destructuring-size (car x)) n)))
((atom x) (+ n (if (null x) 0 1)))))
(defun estimate-code-size (x env)
(declare (si::c-local))
(catch 'estimate-code-size
(estimate-code-size-1 x env)))
(defun estimate-code-size-1 (x env)
(declare (si::c-local))
(flet ((list-size (l)
(let ((n 0))
(declare (fixnum n))
(dolist (x l n) (incf n (estimate-code-size-1 x env))))))
;; ???? (declare (function list-size (list) fixnum))
(cond ((constantp x #+Genera env) 1)
((symbolp x) (multiple-value-bind (new-form expanded-p) (macroexpand-1 x env)
(if expanded-p (estimate-code-size-1 new-form env) 1)))
((atom x) 1) ;??? self-evaluating???
((symbolp (car x))
(let ((fn (car x)) (tem nil) (n 0))
(declare (symbol fn) (fixnum n))
(macrolet ((f (overhead &optional (args nil args-p))
`(truly-the fixnum (+ (truly-the fixnum ,overhead)
(truly-the fixnum (list-size ,(if args-p args '(cdr x))))))))
(cond ((setq tem (get-sysprop fn 'estimate-code-size))
(typecase tem
(fixnum (f tem))
(t (funcall tem x env))))
((setq tem (assoc fn *special-code-sizes*)) (f (second tem)))
#+Genera
((eq fn 'compiler:invisible-references) (list-size (cddr x)))
((eq fn 'cond)
(dolist (clause (cdr x) n) (incf n (list-size clause)) (incf n)))
((eq fn 'desetq)
(do ((l (cdr x) (cdr l))) ((null l) n)
(setq n (+ n (destructuring-size (car l)) (estimate-code-size-1 (cadr l) env)))))
((member fn '(setq psetq))
(do ((l (cdr x) (cdr l))) ((null l) n)
(setq n (+ n (estimate-code-size-1 (cadr l) env) 1))))
((eq fn 'go) 1)
((eq fn 'function)
;;This skirts the issue of implementationally-defined lambda macros
;; by recognizing CL function names and nothing else.
(if (or (symbolp (cadr x))
(and (consp (cadr x)) (eq (caadr x) 'setf)))
1
(throw 'duplicatable-code-p nil)))
((eq fn 'multiple-value-setq) (f (length (second x)) (cddr x)))
((eq fn 'return-from) (1+ (estimate-code-size-1 (third x) env)))
((or (special-operator-p fn) (member fn *estimate-code-size-punt*))
(throw 'estimate-code-size nil))
(t (multiple-value-bind (new-form expanded-p) (macroexpand-1 x env)
(if expanded-p
(estimate-code-size-1 new-form env)
(f 3))))))))
(t (throw 'estimate-code-size nil)))))
;;;; Loop Errors
(defun loop-context ()
(declare (si::c-local))
(do ((l *loop-source-context* (cdr l)) (new nil (cons (car l) new)))
((eq l (cdr *loop-source-code*)) (nreverse new))))
(defun loop-error (format-string &rest format-args)
(declare (si::c-local))
(si::simple-program-error "~?~%Current LOOP context:~{ ~S~}."
format-string format-args (loop-context)))
(defun loop-warn (format-string &rest format-args)
(declare (si::c-local))
(warn 'sys::simple-style-warning
:format-control "~?~%Current LOOP context:~{ ~S~}."
:format-arguments (list format-string format-args (loop-context))))
(defun loop-check-data-type (specified-type required-type
&optional (default-type required-type))
(declare (si::c-local))
(if (null specified-type)
default-type
(multiple-value-bind (a b) (subtypep specified-type required-type)
(cond ((not b)
(loop-warn "LOOP couldn't verify that ~S is a subtype of the required type ~S."
specified-type required-type))
((not a)
(loop-error "Specified data type ~S is not a subtype of ~S."
specified-type required-type)))
specified-type)))
;;;INTERFACE: Traditional, ANSI, Lucid.
(defmacro loop-finish ()
"Causes the iteration to terminate \"normally\", the same as implicit
termination by an iteration driving clause, or by use of WHILE or
UNTIL -- the epilogue code (if any) will be run, and any implicitly
collected result will be returned as the value of the LOOP."
'(go end-loop))
(defun subst-gensyms-for-nil (tree)
(declare (special *ignores*))
(cond
((null tree) (car (push (gensym) *ignores*)))
((atom tree) tree)
(t (cons (subst-gensyms-for-nil (car tree))
(subst-gensyms-for-nil (cdr tree))))))
(defun loop-build-destructuring-bindings (crocks forms)
(if crocks
(let ((*ignores* ()))
(declare (special *ignores*))
`((destructuring-bind ,(subst-gensyms-for-nil (car crocks))
,(cadr crocks)
(declare (ignore ,@*ignores*))
,@(loop-build-destructuring-bindings (cddr crocks) forms))))
forms))
(defun loop-translate (*loop-source-code* *loop-macro-environment* *loop-universe*)
(declare (si::c-local))
(let ((*loop-original-source-code* *loop-source-code*)
(*loop-source-context* nil)
(*loop-iteration-variables* nil)
(*loop-variables* nil)
(*loop-nodeclare* nil)
(*loop-named-variables* nil)
(*loop-declarations* nil)
(*loop-desetq-crocks* nil)
(*loop-bind-stack* nil)
(*loop-prologue* nil)
(*loop-wrappers* nil)
(*loop-before-loop* nil)
(*loop-body* nil)
(*loop-emitted-body* nil)
(*loop-after-body* nil)
(*loop-epilogue* nil)
(*loop-after-epilogue* nil)
(*loop-final-value-culprit* nil)
(*loop-inside-conditional* nil)
(*loop-when-it-variable* nil)
(*loop-never-stepped-variable* nil)
(*loop-names* nil)
(*loop-collection-cruft* nil))
(loop-iteration-driver)
(loop-bind-block)
(let ((answer `(loop-body
,(nreverse *loop-prologue*)
,(nreverse *loop-before-loop*)
,(nreverse *loop-body*)
,(nreverse *loop-after-body*)
,(nreconc *loop-epilogue* (nreverse *loop-after-epilogue*)))))
(dolist (entry *loop-bind-stack*)
(let ((vars (first entry))
(dcls (second entry))
(crocks (third entry))
(wrappers (fourth entry)))
(dolist (w wrappers)
(setq answer (append w (list answer))))
(when (or vars dcls crocks)
(let ((forms (list answer)))
;;(when crocks (push crocks forms))
(when dcls (push `(declare ,@dcls) forms))
(setq answer `(,(cond ((not vars) 'locally)
(*loop-destructuring-hooks* (first *loop-destructuring-hooks*))
(t 'let))
,vars
,@(loop-build-destructuring-bindings crocks forms)))))))
(if *loop-names*
(do () ((null (car *loop-names*)) answer)
(setq answer `(block ,(pop *loop-names*) ,answer)))
`(block nil ,answer)))))
(defun loop-iteration-driver ()
(declare (si::c-local))
(do () ((null *loop-source-code*))
(let ((keyword (car *loop-source-code*)) (tem nil))
(cond ((not (symbolp keyword))
(loop-error "~S found where LOOP keyword expected." keyword))
(t (setq *loop-source-context* *loop-source-code*)
(loop-pop-source)
(cond ((setq tem (loop-lookup-keyword keyword (loop-universe-keywords *loop-universe*)))
;;It's a "miscellaneous" toplevel LOOP keyword (do, collect, named, etc.)
(apply (symbol-function (first tem)) (rest tem)))
((setq tem (loop-lookup-keyword keyword (loop-universe-iteration-keywords *loop-universe*)))
(loop-hack-iteration tem))
((loop-tmember keyword '(and else))
;; Alternative is to ignore it, ie let it go around to the next keyword...
(loop-error "Secondary clause misplaced at top level in LOOP macro: ~S ~S ~S ..."
keyword (car *loop-source-code*) (cadr *loop-source-code*)))
(t (loop-error "~S is an unknown keyword in LOOP macro." keyword))))))))
(defun loop-pop-source ()
(declare (si::c-local))
(if *loop-source-code*
(pop *loop-source-code*)
(loop-error "LOOP source code ran out when another token was expected.")))
(defun loop-get-compound-form ()
(declare (si::c-local))
(let ((form (loop-get-form)))
(unless (consp form)
(loop-error "Compound form expected, but found ~A." form))
form))
(defun loop-get-progn ()
(declare (si::c-local))
(do ((forms (list (loop-get-compound-form))
(cons (loop-get-compound-form) forms))
(nextform (car *loop-source-code*)
(car *loop-source-code*)))
((atom nextform)
(if (null (cdr forms)) (car forms) (cons 'progn (nreverse forms))))))
(defun loop-get-form ()
(declare (si::c-local))
(if *loop-source-code*
(loop-pop-source)
(loop-error "LOOP code ran out where a form was expected.")))
(defun loop-construct-return (form)
(declare (si::c-local))
`(return-from ,(car *loop-names*) ,form))
(defun loop-emit-body (form)
(declare (si::c-local))
(setq *loop-emitted-body* t)
(push form *loop-body*))
(defun loop-emit-final-value (&optional (form nil form-supplied-p))
(declare (si::c-local))
(when form-supplied-p
(push (loop-construct-return form) *loop-after-epilogue*))
(when *loop-final-value-culprit*
(loop-warn "LOOP clause is providing a value for the iteration,~@
however one was already established by a ~S clause."
*loop-final-value-culprit*))
(setq *loop-final-value-culprit* (car *loop-source-context*)))
(defun loop-disallow-conditional (&optional kwd)
(declare (si::c-local))
#+(or Genera CLOE) (declare (dbg:error-reporter))
(when *loop-inside-conditional*
(loop-error "~:[This LOOP~;The LOOP ~:*~S~] clause is not permitted inside a conditional." kwd)))
(defun loop-disallow-anonymous-collectors ()
(when (find-if-not 'loop-collector-name *loop-collection-cruft*)
(loop-error "This LOOP clause is not permitted with anonymous collectors.")))
(defun loop-disallow-aggregate-booleans ()
(when (loop-tmember *loop-final-value-culprit* '(always never thereis))
(loop-error "This anonymous collection LOOP clause is not permitted with aggregate booleans.")))
;;;; Loop Types
(defun loop-typed-init (data-type)
(declare (si::c-local))
(cond ((null data-type)
nil)
((subtypep data-type 'character)
#\0)
((not (subtypep data-type 'number))
nil)
((subtypep data-type '(or float (complex float)))
(coerce 0 data-type))
(t
0)))
(defun loop-optional-type (&optional variable)
(declare (si::c-local))
;;No variable specified implies that no destructuring is permissible.
(and *loop-source-code* ;Don't get confused by NILs...
(let ((z (car *loop-source-code*)))
(cond ((loop-tequal z 'of-type)
;;This is the syntactically unambigous form in that the form of the
;; type specifier does not matter. Also, it is assumed that the
;; type specifier is unambiguously, and without need of translation,
;; a common lisp type specifier or pattern (matching the variable) thereof.
(loop-pop-source)
(loop-pop-source))
((symbolp z)
;;This is the (sort of) "old" syntax, even though we didn't used to support all of
;; these type symbols.
(let ((type-spec (or (gethash z (loop-universe-type-symbols *loop-universe*))
(gethash (symbol-name z) (loop-universe-type-keywords *loop-universe*)))))
(when type-spec
(loop-pop-source)
type-spec)))
(t
;;This is our sort-of old syntax. But this is only valid for when we are destructuring,
;; so we will be compulsive (should we really be?) and require that we in fact be
;; doing variable destructuring here. We must translate the old keyword pattern typespec
;; into a fully-specified pattern of real type specifiers here.
(if (consp variable)
(unless (consp z)
(loop-error
"~S found where a LOOP keyword, LOOP type keyword, or LOOP type pattern expected."
z))
(loop-error "~S found where a LOOP keyword or LOOP type keyword expected." z))
(loop-pop-source)
(labels ((translate (k v)
(cond ((null k) nil)
((atom k)
(replicate
(or (gethash k (loop-universe-type-symbols *loop-universe*))
(gethash (symbol-name k) (loop-universe-type-keywords *loop-universe*))
(loop-error
"Destructuring type pattern ~S contains unrecognized type keyword ~S."
z k))
v))
((atom v)
(loop-error
"Destructuring type pattern ~S doesn't match variable pattern ~S."
z variable))
(t (cons (translate (car k) (car v)) (translate (cdr k) (cdr v))))))
(replicate (typ v)
(if (atom v) typ (cons (replicate typ (car v)) (replicate typ (cdr v))))))
(translate z variable)))))))
;;;; Loop Variables
(defun loop-bind-block ()
(declare (si::c-local))
(when (or *loop-variables* *loop-declarations* *loop-wrappers*)
(push (list (nreverse *loop-variables*) *loop-declarations* *loop-desetq-crocks* *loop-wrappers*)
*loop-bind-stack*)
(setq *loop-variables* nil
*loop-declarations* nil
*loop-desetq-crocks* nil
*loop-wrappers* nil)))
(defun loop-variable-p (name)
(do ((entry *loop-bind-stack* (cdr entry))) (nil)
(cond ((null entry)
(return nil))
((assoc name (caar entry) :test #'eq)
(return t)))))
(defun loop-make-variable (name initialization dtype &optional iteration-variable-p)
(declare (si::c-local))
(cond ((null name)
(cond ((not (null initialization))
(push (list (setq name (gensym "LOOP-IGNORE-"))
initialization)
*loop-variables*)
(push `(ignore ,name) *loop-declarations*))))
((atom name)
(cond (iteration-variable-p
(if (member name *loop-iteration-variables*)
(loop-error "Duplicated LOOP iteration variable ~S." name)
(push name *loop-iteration-variables*)))
((assoc name *loop-variables*)
(loop-error "Duplicated variable ~S in LOOP parallel binding." name)))
(unless (symbolp name)
(loop-error "Bad variable ~S somewhere in LOOP." name))
(loop-declare-variable name dtype)
;; We use ASSOC on this list to check for duplications (above),
;; so don't optimize out this list:
(push (list name (or initialization (loop-typed-init dtype)))
*loop-variables*))
(initialization
(cond (*loop-destructuring-hooks*
(loop-declare-variable name dtype)
(push (list name initialization) *loop-variables*))
(t (let ((newvar (gensym "LOOP-DESTRUCTURE-")))
(loop-declare-variable name dtype)
(push (list newvar initialization) *loop-variables*)
;; *LOOP-DESETQ-CROCKS* gathered in reverse order.
(setq *loop-desetq-crocks*
(list* name newvar *loop-desetq-crocks*))
#+ignore
(loop-make-variable name nil dtype iteration-variable-p)))))
(t (let ((tcar nil) (tcdr nil))
(if (atom dtype) (setq tcar (setq tcdr dtype))
(setq tcar (car dtype) tcdr (cdr dtype)))
(loop-make-variable (car name) nil tcar iteration-variable-p)
(loop-make-variable (cdr name) nil tcdr iteration-variable-p))))
name)
(defun loop-make-iteration-variable (name initialization dtype)
(declare (si::c-local))
(loop-make-variable name initialization dtype t))
(defun loop-declare-variable (name dtype)
(declare (si::c-local))
(cond ((or (null name) (null dtype) (eq dtype t)) nil)
((symbolp name)
(unless (or (eq dtype t) (member (truly-the symbol name) *loop-nodeclare*))
;; Allow redeclaration of a variable. This can be used by
;; the loop constructors to make the type more and more
;; precise as we add keywords
(let ((previous (find name *loop-declarations*
:key #'(lambda (d)
(and (consp d)
(= (length d) 3)
(eq (cons-car d) 'type)
(third d))))))
(if previous
(setf (second previous) dtype)
(push `(type ,dtype ,name) *loop-declarations*)))))
((consp name)
(cond ((consp dtype)
(loop-declare-variable (car name) (car dtype))
(loop-declare-variable (cdr name) (cdr dtype)))
(t (loop-declare-variable (car name) dtype)
(loop-declare-variable (cdr name) dtype))))
(t (error "Invalid LOOP variable passed in: ~S." name))))
(defun loop-maybe-bind-form (form data-type)
(declare (si::c-local))
(if (loop-constantp form)
form
(loop-make-variable (gensym "LOOP-BIND-") form data-type)))
(defun loop-do-if (for negatep)
(let ((form (loop-get-form))
(*loop-inside-conditional* t)
(it-p nil)
(first-clause-p t))
(flet ((get-clause (for)
(do ((body nil)) (nil)
(let ((key (car *loop-source-code*)) (*loop-body* nil) data)
(cond ((not (symbolp key))
(loop-error
"~S found where keyword expected getting LOOP clause after ~S."
key for))
(t (setq *loop-source-context* *loop-source-code*)
(loop-pop-source)
(when (and (loop-tequal (car *loop-source-code*) 'it)
first-clause-p)
(setq *loop-source-code*
(cons (or it-p (setq it-p (loop-when-it-variable)))
(cdr *loop-source-code*))))
(cond ((or (not (setq data (loop-lookup-keyword
key (loop-universe-keywords *loop-universe*))))
(progn (apply (symbol-function (car data)) (cdr data))
(null *loop-body*)))
(loop-error
"~S does not introduce a LOOP clause that can follow ~S."
key for))
(t (setq body (nreconc *loop-body* body)))))))
(setq first-clause-p nil)
(if (loop-tequal (car *loop-source-code*) :and)
(loop-pop-source)
(return (if (cdr body) `(progn ,@(nreverse body)) (car body)))))))
(let ((then (get-clause for))
(else (when (loop-tequal (car *loop-source-code*) :else)
(loop-pop-source)
(list (get-clause :else)))))
(when (loop-tequal (car *loop-source-code*) :end)
(loop-pop-source))
(when it-p (setq form `(setq ,it-p ,form)))
(loop-emit-body
`(if ,(if negatep `(not ,form) form)
,then
,@else))))))
(defun loop-do-initially ()
(loop-disallow-conditional :initially)
(push (loop-get-progn) *loop-prologue*))
(defun loop-do-finally ()
(loop-disallow-conditional :finally)
(push (loop-get-progn) *loop-epilogue*))
(defun loop-do-do ()
(loop-emit-body (loop-get-progn)))
(defun loop-do-named ()
(let ((name (loop-pop-source)))
(unless (symbolp name)
(loop-error "~S is an invalid name for your LOOP." name))
(when (or *loop-before-loop* *loop-body* *loop-after-epilogue* *loop-inside-conditional*)
(loop-error "The NAMED ~S clause occurs too late." name))
(when *loop-names*
(loop-error "You may only use one NAMED clause in your loop: NAMED ~S ... NAMED ~S."
(car *loop-names*) name))
(setq *loop-names* (list name nil))))
(defun loop-do-return ()
(loop-emit-body (loop-construct-return (loop-get-form))))
;;;; Value Accumulation: List
(defstruct (loop-collector
#+ecl (:type vector)
#+nil (:copier nil)
#+nil (:predicate nil))
name
class
(history nil)
(tempvars nil)
dtype
(data nil)) ;collector-specific data
(defun loop-get-collection-info (collector class default-type)
(declare (si::c-local))
(let ((form (loop-get-form))
(dtype (and (not (loop-universe-ansi *loop-universe*)) (loop-optional-type)))
(name (when (loop-tequal (car *loop-source-code*) 'into)
(loop-pop-source)
(loop-pop-source))))
(when (not (symbolp name))
(loop-error "Value accumulation recipient name, ~S, is not a symbol." name))
(unless name
(loop-disallow-aggregate-booleans))
(unless dtype
(setq dtype (or (loop-optional-type) default-type)))
(let ((cruft (find (truly-the symbol name) *loop-collection-cruft*
:key #'loop-collector-name)))
(cond ((not cruft)
(when (and name (loop-variable-p name))
(loop-error "Variable ~S cannot be used in INTO clause" name))
(push (setq cruft (make-loop-collector
:name name :class class
:history (list collector) :dtype dtype))
*loop-collection-cruft*))
(t (unless (eq (loop-collector-class cruft) class)
(loop-error
"Incompatible kinds of LOOP value accumulation specified for collecting~@
~:[as the value of the LOOP~;~:*INTO ~S~]: ~S and ~S."
name (car (loop-collector-history cruft)) collector))
(unless (equal dtype (loop-collector-dtype cruft))
(loop-warn
"Unequal datatypes specified in different LOOP value accumulations~@
into ~S: ~S and ~S."
name dtype (loop-collector-dtype cruft))
(when (eq (loop-collector-dtype cruft) t)
(setf (loop-collector-dtype cruft) dtype)))
(push collector (loop-collector-history cruft))))
(values cruft form))))
(defun loop-list-collection (specifically) ;NCONC, LIST, or APPEND
(multiple-value-bind (lc form) (loop-get-collection-info specifically 'list 'list)
(let ((tempvars (loop-collector-tempvars lc)))
(unless tempvars
(setf (loop-collector-tempvars lc)
(setq tempvars (list* (gensym "LOOP-LIST-HEAD")
(gensym "LOOP-LIST-TAIL")
(and (loop-collector-name lc)
(list (loop-collector-name lc))))))
(push `(with-loop-list-collection-head ,tempvars) *loop-wrappers*)
(unless (loop-collector-name lc)
(loop-emit-final-value `(loop-collect-answer ,(car tempvars) ,@(cddr tempvars)))))
(ecase specifically
(list (setq form `(list ,form)))
(nconc nil)
(append (unless (and (consp form) (eq (car form) 'list))
(setq form `(loop-copylist* ,form)))))
(loop-emit-body `(loop-collect-rplacd ,tempvars ,form)))))
;;;; Value Accumulation: max, min, sum, count.
(defun loop-sum-collection (specifically required-type default-type) ;SUM, COUNT
(multiple-value-bind (lc form)
(loop-get-collection-info specifically 'sum default-type)
(loop-check-data-type (loop-collector-dtype lc) required-type)
(let ((tempvars (loop-collector-tempvars lc)))
(unless tempvars
(setf (loop-collector-tempvars lc)
(setq tempvars (list (loop-make-variable
(or (loop-collector-name lc)
(gensym "LOOP-SUM-"))
nil (loop-collector-dtype lc)))))
(unless (loop-collector-name lc)
(loop-emit-final-value (car (loop-collector-tempvars lc)))))
(loop-emit-body
(if (eq specifically 'count)
`(when ,form
(setq ,(car tempvars)
,(hide-variable-reference t (car tempvars) `(1+ ,(car tempvars)))))
`(setq ,(car tempvars)
(+ ,(hide-variable-reference t (car tempvars) (car tempvars))
,form)))))))
(defun loop-maxmin-collection (specifically)
(multiple-value-bind (lc form)
(loop-get-collection-info specifically 'maxmin *loop-real-data-type*)
(loop-check-data-type (loop-collector-dtype lc) *loop-real-data-type*)
(let ((data (loop-collector-data lc)))
(unless data
(setf (loop-collector-data lc)
(setq data (make-loop-minimax
(or (loop-collector-name lc) (gensym "LOOP-MAXMIN-"))
(loop-collector-dtype lc))))
(unless (loop-collector-name lc)
(loop-emit-final-value (loop-minimax-answer-variable data))))
(loop-note-minimax-operation specifically data)
(push `(with-minimax-value ,data) *loop-wrappers*)
(loop-emit-body `(loop-accumulate-minimax-value ,data ,specifically ,form))
)))
;;;; Value Accumulation: Aggregate Booleans
;;;ALWAYS and NEVER.
;;; Under ANSI these are not permitted to appear under conditionalization.
(defun loop-do-always (restrictive negate)
(let ((form (loop-get-form)))
(when restrictive (loop-disallow-conditional))
(loop-disallow-anonymous-collectors)
(loop-emit-body `(,(if negate 'when 'unless) ,form
,(loop-construct-return nil)))
(loop-emit-final-value t)))
;;;THERIS.
;;; Under ANSI this is not permitted to appear under conditionalization.
(defun loop-do-thereis (restrictive)
(when restrictive (loop-disallow-conditional))
(loop-disallow-anonymous-collectors)
(loop-emit-final-value)
(loop-emit-body `(when (setq ,(loop-when-it-variable) ,(loop-get-form))
,(loop-construct-return *loop-when-it-variable*))))
(defun loop-do-while (negate kwd &aux (form (loop-get-form)))
(loop-disallow-conditional kwd)
(loop-emit-body `(,(if negate 'when 'unless) ,form (go end-loop))))
(defun loop-do-with ()
(loop-disallow-conditional :with)
(do ((var) (val) (dtype)) (nil)
(setq var (loop-pop-source)
dtype (loop-optional-type var)
val (cond ((loop-tequal (car *loop-source-code*) :=)
(loop-pop-source)
(loop-get-form))
(t nil)))
(when (and var (loop-variable-p var))
(loop-error "Variable ~S has already been used" var))
(loop-make-variable var val dtype)
(if (loop-tequal (car *loop-source-code*) :and)
(loop-pop-source)
(return (loop-bind-block)))))
;;;; The iteration driver
(defun loop-hack-iteration (entry)
(declare (si::c-local))
(flet ((make-endtest (list-of-forms)
(cond ((null list-of-forms) nil)
((member t list-of-forms) '(go end-loop))
(t `(when ,(if (null (cdr (setq list-of-forms (nreverse list-of-forms))))
(car list-of-forms)
(cons 'or list-of-forms))
(go end-loop))))))
(do ((pre-step-tests nil)
(steps nil)
(post-step-tests nil)
(pseudo-steps nil)
(pre-loop-pre-step-tests nil)
(pre-loop-steps nil)
(pre-loop-post-step-tests nil)
(pre-loop-pseudo-steps nil)
(tem) (data))
(nil)
;; Note we collect endtests in reverse order, but steps in correct
;; order. MAKE-ENDTEST does the nreverse for us.
(setq tem (setq data (apply (symbol-function (first entry)) (rest entry))))
(and (car tem) (push (car tem) pre-step-tests))
(setq steps (nconc steps (loop-copylist* (car (setq tem (cdr tem))))))
(and (car (setq tem (cdr tem))) (push (car tem) post-step-tests))
(setq pseudo-steps (nconc pseudo-steps (loop-copylist* (car (setq tem (cdr tem))))))
(setq tem (cdr tem))
(when *loop-emitted-body*
(loop-warn "Iteration in LOOP follows body code."))
(unless tem (setq tem data))
(when (car tem) (push (car tem) pre-loop-pre-step-tests))
(setq pre-loop-steps (nconc pre-loop-steps (loop-copylist* (car (setq tem (cdr tem))))))
(when (car (setq tem (cdr tem))) (push (car tem) pre-loop-post-step-tests))
(setq pre-loop-pseudo-steps (nconc pre-loop-pseudo-steps (loop-copylist* (cadr tem))))
(unless (loop-tequal (car *loop-source-code*) :and)
(setq *loop-before-loop* (list* (loop-make-desetq pre-loop-pseudo-steps)
(make-endtest pre-loop-post-step-tests)
(loop-make-psetq pre-loop-steps)
(make-endtest pre-loop-pre-step-tests)
*loop-before-loop*)
*loop-after-body* (list* (loop-make-desetq pseudo-steps)
(make-endtest post-step-tests)
(loop-make-psetq steps)
(make-endtest pre-step-tests)
*loop-after-body*))
(loop-bind-block)
(return nil))
(loop-pop-source) ; flush the "AND"
(when (and (not (loop-universe-implicit-for-required *loop-universe*))
(setq tem (loop-lookup-keyword
(car *loop-source-code*)
(loop-universe-iteration-keywords *loop-universe*))))
;;Latest ANSI clarification is that the FOR/AS after the AND must NOT be supplied.
(loop-pop-source)
(setq entry tem)))))
;;;; Main Iteration Drivers
;FOR variable keyword ..args..
(defun loop-do-for ()
(let* ((var (loop-pop-source))
(data-type (loop-optional-type var))
(keyword (loop-pop-source))
(first-arg nil)
(tem nil))
(setq first-arg (loop-get-form))
(unless (and (symbolp keyword)
(setq tem (loop-lookup-keyword
keyword
(loop-universe-for-keywords *loop-universe*))))
(loop-error "~S is an unknown keyword in FOR or AS clause in LOOP." keyword))
(apply (car tem) var first-arg data-type (cdr tem))))
(defun loop-do-repeat ()
(loop-disallow-conditional :repeat)
(let* ((form (loop-get-form))
(type (if (fixnump form) 'fixnum 'real))
(var (loop-make-variable (gensym) form type))
(form `(loop-unsafe (when (minusp (decf ,var)) (go end-loop)))))
(push form *loop-before-loop*)
(push form *loop-after-body*)
;; FIXME: What should
;; (loop count t into a
;; repeat 3
;; count t into b
;; finally (return (list a b)))
;; return: (3 3) or (4 3)? PUSHes above are for the former
;; variant, L-P-B below for the latter.
#+nil (loop-pseudo-body form)))
(defun loop-when-it-variable ()
(declare (si::c-local))
(or *loop-when-it-variable*
(setq *loop-when-it-variable*
(loop-make-variable (gensym "LOOP-IT-") nil nil))))
;;;; Various FOR/AS Subdispatches
;;;ANSI "FOR x = y [THEN z]" is sort of like the old Genera one when the THEN
;;; is omitted (other than being more stringent in its placement), and like
;;; the old "FOR x FIRST y THEN z" when the THEN is present. I.e., the first
;;; initialization occurs in the loop body (first-step), not in the variable binding
;;; phase.
(defun loop-ansi-for-equals (var val data-type)
(loop-make-iteration-variable var nil data-type)
(cond ((loop-tequal (car *loop-source-code*) :then)
;;Then we are the same as "FOR x FIRST y THEN z".
(loop-pop-source)
`(() (,var ,(loop-get-form)) () ()
() (,var ,val) () ()))
(t ;;We are the same as "FOR x = y".
`(() (,var ,val) () ()))))
(defun loop-for-across (var val data-type)
(loop-make-iteration-variable var nil data-type)
(let ((vector-var (gensym "LOOP-ACROSS-VECTOR-"))
(index-var (gensym "LOOP-ACROSS-INDEX-")))
(multiple-value-bind (vector-form constantp vector-value)
(loop-constant-fold-if-possible val 'vector)
(loop-make-variable
vector-var vector-form
(if (and (consp vector-form) (eq (car vector-form) 'the))
(cadr vector-form)
'vector))
#+Genera (push `(system:array-register ,vector-var) *loop-declarations*)
(loop-make-variable index-var 0 'fixnum)
(let* ((length 0)
(length-form (cond ((not constantp)
(let ((v (gensym "LOOP-ACROSS-LIST")))
(push `(setq ,v (length ,vector-var)) *loop-prologue*)
(loop-make-variable v 0 'fixnum)))
(t (setq length (length vector-value)))))
(first-test `(>= ,index-var ,length-form))
(other-test first-test)
(step `(,var (aref ,vector-var ,index-var)))
(pstep `(,index-var (1+ ,index-var))))
(declare (fixnum length))
(when constantp
(setq first-test (= length 0))
(when (<= length 1)
(setq other-test t)))
`(,other-test ,step () ,pstep
,@(and (not (eq first-test other-test)) `(,first-test ,step () ,pstep)))))))
;;;; List Iteration
(defun loop-list-step (listvar)
(declare (si::c-local))
;;We are not equipped to analyze whether 'FOO is the same as #'FOO here in any
;; sensible fashion, so let's give an obnoxious warning whenever 'FOO is used
;; as the stepping function.
;;While a Discerning Compiler may deal intelligently with (funcall 'foo ...), not
;; recognizing FOO may defeat some LOOP optimizations.
(let ((stepper (cond ((loop-tequal (car *loop-source-code*) :by)
(loop-pop-source)
(loop-get-form))
(t '(function cons-cdr)))))
(cond ((and (consp stepper) (eq (car stepper) 'quote))
(loop-warn "Use of QUOTE around stepping function in LOOP will be left verbatim.")
(values `(funcall ,stepper ,listvar) nil))
((and (consp stepper) (eq (car stepper) 'function))
(values (list (cadr stepper) listvar) (cadr stepper)))
(t (values `(funcall ,(loop-make-variable (gensym "LOOP-FN") stepper 'function)
,listvar)
nil)))))
(defun loop-for-on (var val data-type)
(multiple-value-bind (list constantp list-value) (loop-constant-fold-if-possible val)
(let ((listvar var))
(cond ((and var (symbolp var)) (loop-make-iteration-variable var list data-type))
(t (loop-make-variable (setq listvar (gensym)) list 'list)
(loop-make-iteration-variable var nil data-type)))
(multiple-value-bind (list-step step-function) (loop-list-step listvar)
(declare #+(and (not LOOP-Prefer-POP) (not CLOE)) (ignore step-function))
;; The CLOE problem above has to do with bug in macroexpansion of multiple-value-bind.
(let* ((first-endtest
(hide-variable-reference
(eq var listvar)
listvar
;; the following should use `atom' instead of `endp', per
;; [bug2428]
`(atom ,listvar)))
(other-endtest first-endtest))
(when (and constantp (listp list-value))
(setq first-endtest (null list-value)))
(cond ((eq var listvar)
;;Contour of the loop is different because we use the user's variable...
`(() (,listvar ,(hide-variable-reference t listvar list-step)) ,other-endtest
() () () ,first-endtest ()))
#+LOOP-Prefer-POP
((and step-function
(let ((n (cdr (assoc step-function '((cdr . 1) (cddr . 2)
(cdddr . 3) (cddddr . 4))))))
(and n (do ((l var (cdr l)) (i 0 (1+ i)))
((atom l) (and (null l) (= i n)))
(declare (fixnum i))))))
(let ((step (mapcan #'(lambda (x) (list x `(pop ,listvar))) var)))
`(,other-endtest () () ,step ,first-endtest () () ,step)))
(t (let ((step `(,var ,listvar)) (pseudo `(,listvar ,list-step)))
`(,other-endtest ,step () ,pseudo
,@(and (not (eq first-endtest other-endtest))
`(,first-endtest ,step () ,pseudo)))))))))))
(defun loop-for-in (var val data-type)
(multiple-value-bind (list constantp list-value) (loop-constant-fold-if-possible val)
(let ((listvar (gensym "LOOP-LIST")))
(loop-make-iteration-variable var nil data-type)
(loop-make-variable listvar list 'list)
(multiple-value-bind (list-step step-function) (loop-list-step listvar)
#-LOOP-Prefer-POP (declare (ignore step-function))
(let* ((first-endtest `(endp ,listvar))
(other-endtest first-endtest)
(step `(,var (cons-car ,listvar)))
(pseudo-step `(,listvar ,list-step)))
(when (and constantp (listp list-value))
(setq first-endtest (null list-value)))
#+LOOP-Prefer-POP
(when (eq step-function 'cons-cdr)
(setq step `(,var (pop ,listvar)) pseudo-step nil))
`(,other-endtest ,step () ,pseudo-step
,@(and (not (eq first-endtest other-endtest))
`(,first-endtest ,step () ,pseudo-step))))))))
;;;; Iteration Paths
(defstruct (loop-path
#+ecl (:type vector)
#+nil (:copier nil)
#+nil (:predicate nil))
names
preposition-groups
inclusive-permitted
function
user-data)
(defun add-loop-path (names function universe &key preposition-groups inclusive-permitted user-data)
(declare (si::c-local))
(unless (listp names) (setq names (list names)))
;; Can't do this due to CLOS bootstrapping problems.
#-(or Genera (and CLOE Source-Bootstrap) ecl) (check-type universe loop-universe)
(let ((ht (loop-universe-path-keywords universe))
(lp (make-loop-path
:names (mapcar #'symbol-name names)
:function function
:user-data user-data
:preposition-groups (mapcar #'(lambda (x) (if (listp x) x (list x))) preposition-groups)
:inclusive-permitted inclusive-permitted)))
(dolist (name names) (setf (gethash (symbol-name name) ht) lp))
lp))
;;; Note: path functions are allowed to use loop-make-variable, hack
;;; the prologue, etc.
(defun loop-for-being (var val data-type)
;; FOR var BEING each/the pathname prep-phrases using-stuff...
;; each/the = EACH or THE. Not clear if it is optional, so I guess we'll warn.
(let ((path nil)
(data nil)
(inclusive nil)
(stuff nil)
(initial-prepositions nil))
(cond ((loop-tmember val '(:each :the)) (setq path (loop-pop-source)))
((loop-tequal (car *loop-source-code*) :and)
(loop-pop-source)
(setq inclusive t)
(unless (loop-tmember (car *loop-source-code*) '(:its :each :his :her))
(loop-error "~S found where ITS or EACH expected in LOOP iteration path syntax."
(car *loop-source-code*)))
(loop-pop-source)
(setq path (loop-pop-source))
(setq initial-prepositions `((:in ,val))))
(t (loop-error "Unrecognizable LOOP iteration path syntax. Missing EACH or THE?")))
(cond ((not (symbolp path))
(loop-error "~S found where a LOOP iteration path name was expected." path))
((not (setq data (loop-lookup-keyword path (loop-universe-path-keywords *loop-universe*))))
(loop-error "~S is not the name of a LOOP iteration path." path))
((and inclusive (not (loop-path-inclusive-permitted data)))
(loop-error "\"Inclusive\" iteration is not possible with the ~S LOOP iteration path." path)))
(let ((fun (loop-path-function data))
(preps (nconc initial-prepositions
(loop-collect-prepositional-phrases (loop-path-preposition-groups data) t)))
(user-data (loop-path-user-data data)))
(when (symbolp fun) (setq fun (symbol-function fun)))
(setq stuff (if inclusive
(apply fun var data-type preps :inclusive t user-data)
(apply fun var data-type preps user-data))))
(when *loop-named-variables*
(loop-error "Unused USING variables: ~S." *loop-named-variables*))
;; STUFF is now (bindings prologue-forms . stuff-to-pass-back). Protect the system from the user
;; and the user from himself.
(unless (member (length stuff) '(6 10))
(loop-error "Value passed back by LOOP iteration path function for path ~S has invalid length."
path))
(do ((l (car stuff) (cdr l)) (x)) ((null l))
(if (atom (setq x (car l)))
(loop-make-iteration-variable x nil nil)
(loop-make-iteration-variable (car x) (cadr x) (caddr x))))
(setq *loop-prologue* (nconc (reverse (cadr stuff)) *loop-prologue*))
(cddr stuff)))
;;;INTERFACE: Lucid, exported.
;;; i.e., this is part of our extended ansi-loop interface.
(defun named-variable (name)
(declare (si::c-local))
(let ((tem (loop-tassoc name *loop-named-variables*)))
(declare (list tem))
(cond ((null tem) (values (gensym) nil))
(t (setq *loop-named-variables* (delete tem *loop-named-variables*))
(values (cdr tem) t)))))
(defun loop-collect-prepositional-phrases (preposition-groups &optional USING-allowed initial-phrases)
(declare (si::c-local))
(flet ((in-group-p (x group) (car (loop-tmember x group))))
(do ((token nil)
(prepositional-phrases initial-phrases)
(this-group nil nil)
(this-prep nil nil)
(disallowed-prepositions
(mapcan #'(lambda (x)
(loop-copylist*
(find (car x) preposition-groups :test #'in-group-p)))
initial-phrases))
(used-prepositions (mapcar #'car initial-phrases)))
((null *loop-source-code*) (nreverse prepositional-phrases))
(declare (symbol this-prep))
(setq token (car *loop-source-code*))
(dolist (group preposition-groups)
(when (setq this-prep (in-group-p token group))
(return (setq this-group group))))
(cond (this-group
(when (member this-prep disallowed-prepositions)
(loop-error
(if (member this-prep used-prepositions)
"A ~S prepositional phrase occurs multiply for some LOOP clause."
"Preposition ~S used when some other preposition has subsumed it.")
token))
(setq used-prepositions (if (listp this-group)
(append this-group used-prepositions)
(cons this-group used-prepositions)))
(loop-pop-source)
(push (list this-prep (loop-get-form)) prepositional-phrases))
((and USING-allowed (loop-tequal token 'using))
(loop-pop-source)
(do ((z (loop-pop-source) (loop-pop-source)) (tem)) (nil)
(when (cadr z)
(if (setq tem (loop-tassoc (car z) *loop-named-variables*))
(loop-error
"The variable substitution for ~S occurs twice in a USING phrase,~@
with ~S and ~S."
(car z) (cadr z) (cadr tem))
(push (cons (car z) (cadr z)) *loop-named-variables*)))
(when (or (null *loop-source-code*) (symbolp (car *loop-source-code*)))
(return nil))))
(t (return (nreverse prepositional-phrases)))))))
;;;; Master Sequencer Function
(defun loop-sequencer (indexv indexv-type indexv-user-specified-p
variable variable-type
sequence-variable sequence-type
step-hack default-top
prep-phrases)
(declare (si::c-local))
(let ((endform nil) ;Form (constant or variable) with limit value.
(sequencep nil) ;T if sequence arg has been provided.
(testfn nil) ;endtest function
(test nil) ;endtest form.
(stepby (1+ (or (loop-typed-init indexv-type) 0))) ;Our increment.
(stepby-constantp t)
(step nil) ;step form.
(dir nil) ;Direction of stepping: NIL, :UP, :DOWN.
(inclusive-iteration nil) ;T if include last index.
(start-given nil) ;T when prep phrase has specified start
(start-value nil)
(start-constantp nil)
(limit-given nil) ;T when prep phrase has specified end
(limit-constantp nil)
(limit-value nil)
)
(when variable (loop-make-iteration-variable variable nil variable-type))
(do ((l prep-phrases (cdr l)) (prep) (form) (odir)) ((null l))
(setq prep (caar l) form (cadar l))
(case prep
((:of :in)
(setq sequencep t)
(loop-make-variable sequence-variable form sequence-type))
((:from :downfrom :upfrom)
(setq start-given t)
(cond ((eq prep :downfrom) (setq dir ':down))
((eq prep :upfrom) (setq dir ':up)))
(multiple-value-setq (form start-constantp start-value)
(loop-constant-fold-if-possible form indexv-type))
(loop-make-iteration-variable indexv form indexv-type))
((:upto :to :downto :above :below)
(cond ((loop-tequal prep :upto) (setq inclusive-iteration (setq dir ':up)))
((loop-tequal prep :to) (setq inclusive-iteration t))
((loop-tequal prep :downto) (setq inclusive-iteration (setq dir ':down)))
((loop-tequal prep :above) (setq dir ':down))
((loop-tequal prep :below) (setq dir ':up)))
(setq limit-given t)
(multiple-value-setq (form limit-constantp limit-value)
(loop-constant-fold-if-possible form indexv-type))
(setq endform (if limit-constantp
`',limit-value
(loop-make-variable
(gensym "LOOP-LIMIT") form indexv-type))))
(:by
(multiple-value-setq (form stepby-constantp stepby)
(loop-constant-fold-if-possible form indexv-type))
(unless stepby-constantp
(loop-make-variable (setq stepby (gensym "LOOP-STEP-BY")) form indexv-type)))
(t (loop-error
"~S invalid preposition in sequencing or sequence path.~@
Invalid prepositions specified in iteration path descriptor or something?"
prep)))
(when (and odir dir (not (eq dir odir)))
(loop-error "Conflicting stepping directions in LOOP sequencing path"))
(setq odir dir))
(when (and sequence-variable (not sequencep))
(loop-error "Missing OF or IN phrase in sequence path"))
;; Now fill in the defaults.
(unless start-given
(loop-make-iteration-variable
indexv
(setq start-constantp t start-value (or (loop-typed-init indexv-type) 0))
indexv-type))
(cond ((member dir '(nil :up))
(when (or limit-given default-top)
(unless limit-given
(loop-make-variable (setq endform (gensym "LOOP-SEQ-LIMIT-"))
nil indexv-type)
(push `(setq ,endform ,default-top) *loop-prologue*))
(setq testfn (if inclusive-iteration '> '>=)))
(setq step (if (eql stepby 1) `(1+ ,indexv) `(+ ,indexv ,stepby))))
(t (unless start-given
(unless default-top
(loop-error "Don't know where to start stepping."))
(push `(setq ,indexv (1- ,default-top)) *loop-prologue*))
(when (and default-top (not endform))
(setq endform (loop-typed-init indexv-type) inclusive-iteration t))
(when endform (setq testfn (if inclusive-iteration '< '<=)))
(setq step (if (eql stepby 1) `(1- ,indexv) `(- ,indexv ,stepby)))))
(setq step `(loop-unsafe ,step))
(when testfn (setq test (hide-variable-reference t indexv `(,testfn ,indexv ,endform))))
(when step-hack
(setq step-hack `(,variable ,(hide-variable-reference indexv-user-specified-p indexv step-hack))))
(let ((first-test test) (remaining-tests test))
(when (and stepby-constantp start-constantp limit-constantp)
;; We can make the number type more precise when we know the
;; start, end and step values.
(let ((new-type (typecase (+ start-value stepby limit-value)
(integer (if (and (fixnump start-value)
(fixnump limit-value))
'fixnum
indexv-type))
(single-float 'single-float)
(double-float 'double-float)
(long-float 'long-float)
(short-float 'short-float)
(t indexv-type))))
(unless (subtypep indexv-type new-type)
(loop-declare-variable indexv new-type)))
(when (setq first-test (funcall (symbol-function testfn) start-value limit-value))
(setq remaining-tests t)))
`(() (,indexv ,(hide-variable-reference t indexv step)) ,remaining-tests ,step-hack
() () ,first-test ,step-hack))))
;;;; Interfaces to the Master Sequencer
(defun loop-for-arithmetic (var val data-type kwd)
(unless var
(setf var (gensym)))
(loop-sequencer
var (loop-check-data-type data-type *loop-real-data-type*) t
nil nil nil nil nil nil
(loop-collect-prepositional-phrases
'((:from :upfrom :downfrom) (:to :upto :downto :above :below) (:by))
nil (list (list kwd val)))))
#+nil
(defun loop-sequence-elements-path (variable data-type prep-phrases
&key fetch-function size-function sequence-type element-type)
(multiple-value-bind (indexv indexv-user-specified-p) (named-variable 'index)
(let ((sequencev (named-variable 'sequence)))
#+Genera (when (and sequencev
(symbolp sequencev)
sequence-type
(subtypep sequence-type 'vector)
(not (member (truly-the symbol sequencev) *loop-nodeclare*)))
(push `(sys:array-register ,sequencev) *loop-declarations*))
(list* nil nil ; dummy bindings and prologue
(loop-sequencer
indexv 'fixnum indexv-user-specified-p
variable (or data-type element-type)
sequencev sequence-type
`(,fetch-function ,sequencev ,indexv) `(,size-function ,sequencev)
prep-phrases)))))
;;;; Builtin LOOP Iteration Paths
#||
(loop for v being the hash-values of ht do (print v))
(loop for k being the hash-keys of ht do (print k))
(loop for v being the hash-values of ht using (hash-key k) do (print (list k v)))
(loop for k being the hash-keys of ht using (hash-value v) do (print (list k v)))
||#
(defun loop-hash-table-iteration-path (variable data-type prep-phrases &key which)
(check-type which (member hash-key hash-value))
(cond ((or (cdr prep-phrases) (not (member (caar prep-phrases) '(:in :of))))
(loop-error "Too many prepositions!"))
((null prep-phrases) (loop-error "Missing OF or IN in ~S iteration path.")))
(let ((ht-var (gensym "LOOP-HASHTAB-"))
(next-fn (gensym "LOOP-HASHTAB-NEXT-"))
(dummy-predicate-var nil)
(post-steps nil))
(multiple-value-bind (other-var other-p)
(named-variable (if (eq which 'hash-key) 'hash-value 'hash-key))
;; named-variable returns a second value of T if the name was actually
;; specified, so clever code can throw away the gensym'ed up variable if
;; it isn't really needed.
;;The following is for those implementations in which we cannot put dummy NILs
;; into multiple-value-setq variable lists.
#-Genera (setq other-p t
dummy-predicate-var (loop-when-it-variable))
(let* ((key-var nil)
(val-var nil)
(temp-val-var (gensym "LOOP-HASH-VAL-TEMP-"))
(temp-key-var (gensym "LOOP-HASH-KEY-TEMP-"))
(temp-predicate-var (gensym "LOOP-HASH-PREDICATE-VAR-"))
(variable (or variable (gensym)))
(bindings `((,variable nil ,data-type)
(,ht-var ,(cadar prep-phrases))
,@(and other-p other-var `((,other-var nil))))))
(if (eq which 'hash-key)
(setq key-var variable val-var (and other-p other-var))
(setq key-var (and other-p other-var) val-var variable))
(push `(with-hash-table-iterator (,next-fn ,ht-var)) *loop-wrappers*)
(when (consp key-var)
(setq post-steps `(,key-var ,(setq key-var (gensym "LOOP-HASH-KEY-TEMP-"))
,@post-steps))
(push `(,key-var nil) bindings))
(when (consp val-var)
(setq post-steps `(,val-var ,(setq val-var (gensym "LOOP-HASH-VAL-TEMP-"))
,@post-steps))
(push `(,val-var nil) bindings))
`(,bindings ;bindings
() ;prologue
() ;pre-test
() ;parallel steps
(not
(multiple-value-bind (,temp-predicate-var ,temp-key-var ,temp-val-var)
(,next-fn)
;; We use M-V-BIND instead of M-V-SETQ because we only
;; want to assign values to the key and val vars when we
;; are in the hash table. When we reach the end,
;; TEMP-PREDICATE-VAR is NIL, and so are temp-key-var and
;; temp-val-var. This might break any type declarations
;; on the key and val vars.
(when ,temp-predicate-var
(setq ,val-var ,temp-val-var)
(setq ,key-var ,temp-key-var))
(setq ,dummy-predicate-var ,temp-predicate-var)
)) ;post-test
,post-steps)))))
(defun loop-package-symbols-iteration-path (variable data-type prep-phrases &key symbol-types)
(cond ((and prep-phrases (cdr prep-phrases))
(loop-error "Too many prepositions!"))
((and prep-phrases (not (member (caar prep-phrases) '(:in :of))))
(loop-error "Unknow preposition ~S" (caar prep-phrases))))
(unless (symbolp variable)
(loop-error "Destructuring is not valid for package symbol iteration."))
(let ((pkg-var (gensym "LOOP-PKGSYM-"))
(next-fn (gensym "LOOP-PKGSYM-NEXT-"))
(variable (or variable (gensym)))
(pkg (or (cadar prep-phrases) '*package*)))
(push `(with-package-iterator (,next-fn ,pkg-var ,@symbol-types)) *loop-wrappers*)
`(((,variable nil ,data-type) (,pkg-var ,pkg))
()
()
()
(not (multiple-value-setq (,(progn
;;@@@@ If an implementation can get away without actually
;; using a variable here, so much the better.
#+Genera NIL
#-Genera (loop-when-it-variable))
,variable)
(,next-fn)))
())))
;;;; ANSI Loop
(defun make-ansi-loop-universe (extended-p)
(declare (si::c-local))
(let ((w (make-standard-loop-universe
:keywords `((named (loop-do-named))
(initially (loop-do-initially))
(finally (loop-do-finally))
(do (loop-do-do))
(doing (loop-do-do))
(return (loop-do-return))
(collect (loop-list-collection list))
(collecting (loop-list-collection list))
(append (loop-list-collection append))
(appending (loop-list-collection append))
(nconc (loop-list-collection nconc))
(nconcing (loop-list-collection nconc))
(count (loop-sum-collection count ,*loop-real-data-type* fixnum))
(counting (loop-sum-collection count ,*loop-real-data-type* fixnum))
(sum (loop-sum-collection sum number number))
(summing (loop-sum-collection sum number number))
(maximize (loop-maxmin-collection max))
(minimize (loop-maxmin-collection min))
(maximizing (loop-maxmin-collection max))
(minimizing (loop-maxmin-collection min))
(always (loop-do-always t nil)) ; Normal, do always
(never (loop-do-always t t)) ; Negate the test on always.
(thereis (loop-do-thereis t))
(while (loop-do-while nil :while)) ; Normal, do while
(until (loop-do-while t :until)) ; Negate the test on while
(when (loop-do-if when nil)) ; Normal, do when
(if (loop-do-if if nil)) ; synonymous
(unless (loop-do-if unless t)) ; Negate the test on when
(with (loop-do-with))
(repeat (loop-do-repeat)))
:for-keywords '((= (loop-ansi-for-equals))
(across (loop-for-across))
(in (loop-for-in))
(on (loop-for-on))
(from (loop-for-arithmetic :from))
(downfrom (loop-for-arithmetic :downfrom))
(upfrom (loop-for-arithmetic :upfrom))
(below (loop-for-arithmetic :below))
(above (loop-for-arithmetic :above))
(to (loop-for-arithmetic :to))
(upto (loop-for-arithmetic :upto))
(downto (loop-for-arithmetic :downto))
(by (loop-for-arithmetic :by))
(being (loop-for-being)))
:iteration-keywords '((for (loop-do-for))
(as (loop-do-for)))
:type-symbols '(array atom bignum bit bit-vector character compiled-function
complex cons double-float fixnum float
function hash-table integer keyword list long-float
nil null number package pathname random-state
ratio rational readtable sequence short-float
simple-array simple-bit-vector simple-string
simple-vector single-float standard-char
stream string base-char
symbol t vector)
:type-keywords nil
:ansi (if extended-p :extended t))))
(add-loop-path '(hash-key hash-keys) 'loop-hash-table-iteration-path w
:preposition-groups '((:of :in))
:inclusive-permitted nil
:user-data '(:which hash-key))
(add-loop-path '(hash-value hash-values) 'loop-hash-table-iteration-path w
:preposition-groups '((:of :in))
:inclusive-permitted nil
:user-data '(:which hash-value))
(add-loop-path '(symbol symbols) 'loop-package-symbols-iteration-path w
:preposition-groups '((:of :in))
:inclusive-permitted nil
:user-data '(:symbol-types (:internal :external :inherited)))
(add-loop-path '(external-symbol external-symbols) 'loop-package-symbols-iteration-path w
:preposition-groups '((:of :in))
:inclusive-permitted nil
:user-data '(:symbol-types (:external)))
(add-loop-path '(present-symbol present-symbols) 'loop-package-symbols-iteration-path w
:preposition-groups '((:of :in))
:inclusive-permitted nil
:user-data '(:symbol-types (:internal :external)))
w))
(defparameter *loop-ansi-universe*
(make-ansi-loop-universe nil))
(defun loop-standard-expansion (keywords-and-forms environment universe)
(declare (si::c-local))
(if (and keywords-and-forms (symbolp (car keywords-and-forms)))
(loop-translate keywords-and-forms environment universe)
(let ((tag (gensym)))
`(block nil (tagbody ,tag (progn ,@keywords-and-forms) (go ,tag))))))
;;;INTERFACE: ANSI
(defmacro loop (&environment env &rest keywords-and-forms)
#+Genera (declare (compiler:do-not-record-macroexpansions)
(zwei:indentation . zwei:indent-loop))
(loop-standard-expansion keywords-and-forms env *loop-ansi-universe*))
#+allegro
(defun excl::complex-loop-expander (body env)
(loop-standard-expansion body env *loop-ansi-universe*))