Maybe this is not the place for this message. If so, I appologize.
This weekend I got maxima to run in my alpha machine under clisp and as
far as I went, it likes whatever I tryed (weel only very basic stuff, but
it seems to work).
It this the right place to post the patch file?
thanks,
j
Here is a test output.
CLISP 20000306 (March 2000)
Maxima 5.4 Thu Mar 25 16:49:44 CST 1999 (with enhancements by W.
Schelter).
Licensed under the GNU Public License (see file COPYING)
(C1) f(x):=x^2+y;
2
(D1) F(X) := X + Y
(C2) f(2);
(D2) Y + 4
(C3) ev(f(2),y:7);
(D3) 11
(C4) integrate(f(x),x,1,2);
6 Y + 8 3 Y + 1
(D4)   
3 3
(C5) factor(%);
3 Y + 7
(D5) 
3
(C6) f(x):=sin(x)^2+1;
2
(D6) F(X) := SIN (X) + 1
(C7) f(x+1);
2
(D7) SIN (X + 1) + 1
(C8) diff(f(x),x);
(D8) 2 COS(X) SIN(X)
(C9) g(y,z):=f(z)+3*y;
(D9) G(Y, Z) := F(Z) + 3 Y
(C10) ev(g(2*y+z,0.5),y:7)
(D10) 3 (Z + 14) + 1.22984884706593
(C11)h(n):=sum(i*x^i,1,0,n); I
(D11) H(N) := SUM(I X , I, 0, N)
(C12) h(7);
7 6 5 4 3 2
(D12) 7 X + 6 X + 5 X + 4 X + 3 X + 2 X + X
(C13) functions;
(D13) [F(X), G(Y, Z), H(N)]
(C14) t[n](x):=ratexpand(2*x*t[n1](x)t[n2](x));
(D14) T (X) := RATEXPAND(2 X T (X)  T (X))
N N  1 N  2
(C15) t[0](x):=1;
(D15) T (X) := 1
0
(C16) t[1](x):=x;
(D16) T (X) := X
1
(C17) t[4](y);
4 2
(D17) 8 Y  8 Y + 1
(C18) g[n](x):=sum(ev(x),i,n,n+2);
(D18) G (X) := SUM(EV(X), I, N, N + 2)
N
(C19) h(n,x):=sum(ev(x),i,n,n+2);
(D19) H(N, X) := SUM(EV(X), I, N, N + 2)
(C20) g[2](i^2);
2
(D20) 3 I
(C21) h(2,i^2);
(D21) 29
(C22) p[n](x):=ratsimp(1/2^n*n!)*diff((x^21)^n,x,n));
1 2 N
(D22) P (X) := RATSIMP( DIFF((X  1) , X, N))
N N
2 N!
(C23)q(n,x):=ratsimp(1/2^n*n!)*diff((x^21)^n,x,n));
1 2 N
(D23) Q(N, X) := RATSIMP( DIFF((X  1) , X, N))
N
2 N!
(C24) p[2];
2
3 X  1
(D24) LAMBDA([X], )
2
(C25) p[2](y+1);
2
3 (Y + 1)  1
(D25) 
2
(C26) q(2,y);
2
3 Y  1
(D26) 
2
(C27) p[2](5);
(D27) 37
(C28) f[i,j](x,y):=x^i+y^j
I J
(D28) F (X, Y) := X + Y
I, J
(C29) g(fun,a,b):=PRINT(FUN," applied to ",A," and ",B," is ",FUN(A,B));
(D29) G(FUN, A, B) := PRINT(FUN, " applied to ", A, " and ", B, " is ", FUN(A, B))
(C30) G(F[2,1],SIN(%PI),2*C);
2
LAMBDA([X, Y], Y + X ) applied to 0 and 2 C is 2 C
(D30) 2 C
(C31) romberg(sin(y),y,1,%pi);
(D31) 1.540302306426815
(C32) quit();
